Abstract

Prognostic models are vital for predictive maintenance, enabling accurate prediction of remaining useful life (RUL) in complex systems. However, balancing model interpretability, accuracy, and robust uncertainty quantification remains a significant challenge. This study addresses these issues using the DS02 dataset of New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS) by developing a systematic framework that integrates interpretability, predictive accuracy, and uncertainty quantification. A key contribution is the use of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to rank and evaluate prognostic models based on accuracy, interpretability, and uncertainty. Additionally, the study introduces methods to separately quantify aleatory and epistemic uncertainties, offering deeper insights into model reliability. By analyzing 62 methods from 21 literature sources, this research identifies gaps, synthesizes best practices, and introduces an interpretability-accuracy map to guide model selection. Recommendations for hybrid data-driven and physics-informed approaches further enhance model robustness and applicability. This work advances the development of interpretable, accurate, and reliable prognostic systems aligned with real-world operational needs.

References

1.
Ren
,
L.
,
Wang
,
H.
, and
Huang
,
G.
,
2024
, “
DLformer: A Dynamic Length Transformer-Based Network for Efficient Feature Representation in Remaining Useful Life Prediction
,”
IEEE Trans. Neural Networks Learn. Syst.
,
35
(
5
), pp.
5942
5952
.10.1109/TNNLS.2023.3257038
2.
Chao
,
M. A.
,
Adey
,
B. T.
, and
Fink
,
O.
,
2021
, “
Implicit Supervision for Fault Detection and Segmentation of Emerging Fault Types With Deep Variational Autoencoders
,”
Neurocomputing
,
454
, pp.
324
338
.10.1016/j.neucom.2021.04.122
3.
Liu
,
H.
,
Sun
,
Y.
,
Ding
,
W.
,
Wu
,
H.
, and
Zhang
,
H.
,
2024
, “
Enhancing Non-Stationary Feature Learning for Remaining Useful Life Prediction of Aero-Engine Under Multiple Operating Conditions
,”
Measurement
,
227
, p.
114242
.10.1016/j.measurement.2024.114242
4.
Guo
,
J.
,
Li
,
D.
, and
Du
,
B.
,
2024
, “
A Stacked Ensemble Method Based on TCN and Convolutional Bi-Directional GRU With Multiple Time Windows for Remaining Useful Life Estimation
,”
Appl. Soft Comput.
,
150
, p.
111071
.10.1016/j.asoc.2023.111071
5.
Cheng
,
Y.
,
Qv
,
J.
,
Feng
,
K.
, and
Han
,
T.
,
2024
, “
A Bayesian Adversarial Probsparse Transformer Model for Long-Term Remaining Useful Life Prediction
,”
Reliab. Eng. Syst. Saf.
,
248
, p.
110188
.10.1016/j.ress.2024.110188
6.
Xiang
,
F.
,
Zhang
,
Y.
,
Zhang
,
S.
,
Wang
,
Z.
,
Qiu
,
L.
, and
Choi
,
J. H.
,
2024
, “
Bayesian Gated-Transformer Model for Risk-Aware Prediction of Aero-Engine Remaining Useful Life
,”
Expert Syst. Appl.
,
238
, p.
121859
.10.1016/j.eswa.2023.121859
7.
Wang
,
H.
,
Zhang
,
Z.
,
Li
,
X.
,
Deng
,
X.
, and
Jiang
,
W.
,
2023
, “
Comprehensive Dynamic Structure Graph Neural Network for Aero-Engine Remaining Useful Life Prediction
,”
IEEE Trans. Instrum. Meas.
, 72, pp. 1–16.10.1109/TIM.2023.3322481
8.
Guo
,
J.
,
Lei
,
S.
, and
Du
,
B.
,
2024
, “
MHT: A Multiscale Hourglass-Transformer for Remaining Useful Life Prediction of Aircraft Engine
,”
Eng. Appl. Artif. Intell.
,
128
, p.
107519
.10.1016/j.engappai.2023.107519
9.
Gao
,
J.
,
Wang
,
Y.
, and
Sun
,
Z.
,
2024
, “
An Interpretable RUL Prediction Method of Aircraft Engines Under Complex Operating Conditions Using Spatio-Temporal Features
,”
Meas. Sci. Technol.
,
35
(
7
), p.
076003
.10.1088/1361-6501/ad3b2c
10.
Qin
,
L.
,
Zhang
,
S.
,
Sun
,
T.
, and
Zhao
,
X.
,
2024
, “
An Interpretable Neuro-Dynamic Scheme With Feature-Temporal Attention for Remaining Useful Life Estimation
,”
IEEE Trans. Ind. Inf.
,
20
(
4
), pp.
5505
5516
.10.1109/TII.2023.3333933
11.
Koutroulis
,
G.
,
Mutlu
,
B.
, and
Kern
,
R.
,
2022
, “
Constructing Robust Health Indicators From Complex Engineered Systems Via Anticausal Learning
,”
Eng. Appl. Artif. Intell.
,
113
, p.
104926
.10.1016/j.engappai.2022.104926
12.
Xu
,
D.
,
Xiao
,
X.
, and
Zhang
,
J.
,
2024
, “
Multivariable Correlation Feature Network Construction and Health Condition Assessment for Unlabeled Single-Sample Data
,”
Eng. Appl. Artif. Intell.
,
133
, p.
108220
.10.1016/j.engappai.2024.108220
13.
Hua
,
J.
,
Zhang
,
Y.
,
Zhang
,
D.
,
He
,
J.
,
Wang
,
J.
, and
Fang
,
X.
,
2024
, “
Dynamic Feature-Aware Graph Convolutional Network With Multi-Sensor for Remaining Useful Life Prediction of Turbofan Engines
,”
IEEE Sens. J.
,
24
(
18
), pp.
29414
29428
.10.1109/JSEN.2024.3435071
14.
Apostolidis
,
A.
,
Bouriquet
,
N.
, and
Stamoulis
,
K. P.
,
2022
, “
AI-Based Exhaust Gas Temperature Prediction for Trustworthy Safety-Critical Applications
,”
Aerospace
,
9
(
11
), p.
722
.10.3390/aerospace9110722
15.
Maulana
,
F.
,
Starr
,
A.
, and
Ompusunggu
,
A. P.
,
2023
, “
Explainable Data-Driven Method Combined With Bayesian Filtering for Remaining Useful Lifetime Prediction of Aircraft Engines Using NASA CMAPPS Datasets
,”
Machines
,
11
(
2
), p.
163
.10.3390/machines11020163
16.
Zhang
,
X.
,
Leng
,
Z.
,
Zhao
,
Z.
,
Li
,
M.
,
Yu
,
D.
, and
Chen
,
X.
,
2023
, “
Spatial-Temporal Dual-Channel Adaptive Graph Convolutional Network for Remaining Useful Life Prediction With Multi-Sensor Information Fusion
,”
Adv. Eng. Inf.
,
57
, p.
102120
.10.1016/j.aei.2023.102120
17.
Xiao
,
D.
,
Xiao
,
H.
,
Li
,
R.
, and
Wang
,
Z.
,
2024
, “
Application of Physical-Structure-Driven Deep Learning and Compensation Methods in Aircraft Engine Health Management
,”
Eng. Appl. Artif. Intell.
,
136
, p.
109024
.10.1016/j.engappai.2024.109024
18.
Arias Chao
,
M.
,
2021
, “
Combining Deep Learning and Physics-Based Performance Models for Diagnostics and Prognostics
,”
Doctoral dissertation
,
ETH Zurich
, Zurich, Switzerland.10.3929/ethz-b-000517153
19.
Wang
,
Y.
,
Wu
,
M.
,
Li
,
X.
,
Xie
,
L.
, and
Chen
,
Z.
,
2025
, “
A Survey on Graph Neural Networks for Remaining Useful Life Prediction: Methodologies, Evaluation and Future Trends
,”
Mech. Sys. Sig. Processing.
,
229
, p.
112449
.10.1016/j.ymssp.2025.112449
20.
Xiong
,
J.
,
Fink
,
O.
,
Zhou
,
J.
, and
Ma
,
Y.
,
2023
, “
Controlled Physics-Informed Data Generation for Deep Learning-Based Remaining Useful Life Prediction Under Unseen Operation Conditions
,”
Mech. Syst. Signal Process.
,
197
, p.
110359
.10.1016/j.ymssp.2023.110359
21.
Mallamo
,
D.
,
Azarian
,
M. H.
, and
Pecht
,
M. G.
,
2025
, “
Daily Engine Performance Trending Using Common Flight Regime Identification
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
11
(
1
), p.
011107
.10.1115/1.4067057
You do not currently have access to this content.