Corrosion is one of the most critical failure mechanisms for engineering structures and systems, as corrosion damages grow with the increase of service time, thus diminish system reliability gradually. Despite tremendous efforts, effectively carrying out reliability analysis considering the complicated coupling effects for corrosion remains to be a grand challenge. There is a substantial need to develop sophisticated corrosion reliability models and effective reliability analysis approaches considering corrosion damage growth under coupled effects such as mechanical stresses. This paper presents a physics-of-failure model for pitting corrosion with the coupled effect of corrosion environment and mechanical stresses. With the developed model, corrosion damage growth can be projected and corrosion reliability can be analyzed. To carry out corrosion reliability analysis, the developed pitting corrosion model can be formulated as time-dependent limit state functions considering pit to crack transition, crack growth, and fracture failure mechanics. A newly developed maximum confidence enhancement (MCE)-based sequential sampling approach is then employed to improve the efficiency of corrosion reliability analysis with the time-dependent limit state functions. A case study is presented to illustrate the efficacy of the developed physics-of-failure model for corrosion considering the coupled mechanical stress effects, and the new corrosion reliability analysis methodology.

References

1.
Melchers
,
R. E.
,
2005
, “
The Effect of Corrosion on the Structural Reliability of Steel Offshore Structures
,”
Corros. Sci.
,
47
(
10
), pp. 
2391
2410
. 0010-938X10.1016/j.corsci.2005.04.004
2.
Hoeppner
,
D. W.
, and
Arriscorreta
,
C. A.
,
2012
, “
Exfoliation Corrosion and Pitting Corrosion and Their Role in Fatigue Predictive Modeling: State-of-the-Art Review
,”
Int. J. Aerosp. Eng.
,
2012
, p. 
29
. 10.1155/2012/191879
3.
Yokobori
,
A. T.
,
2004
, “
The Mechanism of Hydrogen Embrittlement: The Stress Interaction Between a Crack, a Hydrogen Cluster, and Moving Dislocations
,”
Int. J. Fract.
,
128
, pp. 
121
131
. 0376-942910.1023/B:FRAC.0000040974.59017.55
4.
Elboujdaini
,
M.
, and
Revie
,
R. W.
,
2009
, “
Metallurgical Factors in Stress Corrosion Cracking and Hydrogen-Induced Cracking
,”
J. Solid State Electrochem.
,
13
(
7
), pp. 
1091
1099
.10.1007/s10008-009-0799-0
5.
Teixeira
,
A. P.
,
Guedes Soares
,
C.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
,
2008
, “
Reliability of Pipelines With Corrosion Defects
,”
Int. J. Press. Vessels Pip.
,
85
(
4
), pp 
228
237
.10.1016/j.ijpvp.2007.09.002
6.
Anoop
,
M. B.
,
Rao
,
K. B.
, and
Lakshmana
,
N.
,
2008
, “
Safety Assessment of Austenitic Steel Nuclear Power Plant Pipelines Against Stress Corrosion Cracking in the Presence of Hybrid Uncertainties
,”
Int. J. Press. Vessels Pip.
,
85
(
4
), pp. 
238
247
.10.1016/j.ijpvp.2007.09.001
7.
Li
,
S.
,
Yu
,
S.
,
Zeng
,
H.
,
Li
,
J.
, and
Liang
,
R.
,
2009
, “
Predicting Corrosion Remaining Life of Underground Pipelines With a Mechanically-Based Probabilistic Model
,”
J. Pet. Sci. Eng.
,
65
(
3–4
), pp. 
162
166
. 0920-410510.1016/j.petrol.2008.12.023
8.
Qian
,
G.
,
Niffenegger
,
M.
, and
Li
,
S.
,
2011
, “
Probabilistic Analysis of Pipelines With Corrosion Defects by Using FITNET FFS Procedure
,”
Corros. Sci.
,
53
(
3
), pp. 
855
861
. 0010-938X10.1016/j.corsci.2010.10.014
9.
Nuhi
,
M.
,
Seer
,
T. A.
,
Tamini
,
A. M.
,
Modarres
,
M.
, and
Seibi
,
A.
,
2011
, “
Reliability Analysis for Degradation Effects of Pitting Corrosion in Carbon Steel Pipes
,”
Proc. Eng.
,
10
, pp. 
1930
1935
.10.1016/j.proeng.2011.04.320
10.
Paik
,
J. K.
,
Kim
,
S. K.
, and
Lee
,
S. K.
,
1998
, “
Probabilistic Corrosion Rate Estimation Model for Longitudinal Strength Members of Bulk Carriers
,”
Ocean Eng.
,
25
(
10
), pp. 
837
860
. 0029-801810.1016/S0029-8018(97)10009-9
11.
Melchers
,
R. E.
,
1999
, “
Corrosion Uncertainty Modeling for Steel Structures
,”
J. Constr. Steel Res.
,
52
(
1
), pp. 
3
19
. 0143-974X10.1016/S0143-974X(99)00010-3
12.
Qin
,
S. P.
, and
Cui
,
W.
,
2003
, “
Effect of Corrosion Model on the Time-Dependent Reliability of Steel Plated Elements
,”
Mar. Struct.
,
16
(
1
), pp. 
15
34
.10.1016/S0951-8339(02)00028-X
13.
Melchers
,
R. E.
,
2005
, “
Representation of Uncertainty in Maximum Depth of Marine Corrosion Pits
,”
Struct. Saf.
,
27
(
4
), pp. 
322
334
.10.1016/j.strusafe.2005.02.002
14.
Yu
,
S.
,
Jieze
,
Y.
, and
Tingchao
,
Y.
,
2010
, “
Mechanical Model and Probability Analysis of Buried Pipelines Failure Under Uniform Corrosion
,”
J. Zhejiang Univ.
,
44
(
6
), pp. 
1125
1230
.10.3785/j.issn.1008-973X.2010.06.032
15.
Engelhardt
,
G.
, and
Macdonals
,
D. D.
,
2004
, “
Unification of the Deterministic and Statistical Approaches for Predicting Localized Corrosion Damage. I. Theoretical Foundation
,”
Corros. Sci.
,
46
(
11
), pp. 
2755
2780
. 0010-938X10.1016/j.corsci.2004.03.014
16.
Sheikh
,
A. K.
,
Boah
,
J. K.
, and
Hansen
,
D. A.
,
1990
, “
Statistical Modeling of Pitting Corrosion and Pipeline Reliability
,”
Corros. Sci.
,
46
(
3
), pp. 
190
197
. 0010-938X10.5006/1.3585090
17.
Caleyo
,
F.
, and
Velazquez
,
J. C.
,
2009
, “
Markov Chain Modelling of Pitting Corrosion in Underground Pipelines
,”
Corros. Sci.
,
51
(
9
), pp. 
2197
2207
. 0010-938X10.1016/j.corsci.2009.06.014
18.
Valor
,
A.
,
Caleyo
,
F.
, and
Alfonso
,
L.
,
2007
, “
Stochastic Modeling of Pitting Corrosion: A New Model for Initiation and Growth of Multiple Corrosion Pits
,”
Corros. Sci.
,
49
(
2
), pp. 
559
579
. 0010-938X10.1016/j.corsci.2006.05.049
19.
Zhang
,
T.
,
Liu
,
X.
,
Shao
,
Y.
,
Meng
,
G.
, and
Wang
,
F.
,
2008
, “
Electrochemical Noise Analysis on the Pit Corrosion Susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D Alloy and Pure Magnesium Using Stochastic Model
,”
Corros. Sci.
,
50
(
12
), pp. 
3500
3507
. 0010-938X10.1016/j.corsci.2008.09.033
20.
Xu
,
L. Y.
, and
Cheng
,
Y. F.
,
2012
, “
Reliability and Failure Pressure Prediction of Various Grades of Pipeline Steel in the Presence of Corrosion Defects and Pre-Strain
,”
Int. J. Press. Vessels Pip.
,
89
, pp. 
75
84
.10.1016/j.ijpvp.2011.09.008
21.
Harlow
,
D. G.
, and
Wei
,
R. P.
,
1994
, “
Probability Approach for Prediction of Corrosion and Corrosion Fatigue Life
,”
AIAA J.
,
32
(
10
), pp. 
2073
2079
. 0001-145210.2514/3.12254
22.
Shi
,
P.
, and
Mahadevan
,
M.
,
2001
, “
Damage Tolerance Approach for Probabilistic Pitting Corrosion Fatigue Life Prediction
,”
Eng. Fract. Mech.
,
68
(
13
), pp. 
1493
1507
. 0013-794410.1016/S0013-7944(01)00041-8
23.
Wu
,
G.
,
2011
, “
A Probabilistic-Mechanistic Approach to Modeling Stress Corrosion Cracking Propagation in Alloy 600 Components With Applications
,” Ms.D. Dissertation,
University of Maryland
.
24.
Kondo
,
Y.
,
1989
, “
Prediction of Fatigue Crack Initiation Life Based on Pit Growth
,”
Corrosion
,
45
(
1
), pp. 
7
11
.10.5006/1.3577891
25.
Bedairi
,
B.
,
Cronin
,
D.
,
Hosseini
,
A.
, and
Plumtree
,
A.
,
2012
, “
Failure Prediction for Crack-In-Corrosion Defects in Natural Gas Transmission Pipelines
,”
Int. J. Press. Vessels Pip.
,
96–97
, pp. 
90
99
. 0308-016110.1016/j.ijpvp.2012.06.002
26.
Harlow
,
D. G.
, and
Wei
,
R. P.
,
1998
, “
A Probability Model for the Growth of Corrosion Pits in Aluminum Alloys Induced by Constituent Particles
,”
Eng. Fract. Mech.
,
53
(
3
), pp. 
205
325
. 0013-794410.1016/S0013-7944(97)00127-6
27.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp. 
23
69
.10.1016/S0951-8320(03)00058-9
28.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div. ASCE
,
100
(
1
), pp. 
111
121
.
29.
Tvedt
,
L.
,
1984
, “Two Second-Order Approximations to the Failure Probability,”
Section on Structural Reliability
,
A/S Vertas Research
,
Hovik
.
30.
Wang
,
L. P.
, and
Grandhi
,
R. V.
,
1996
, “
Safety Index Calculation Using Intervening Variables for Structural Reliability
,”
Comput. Struct.
,
59
(
6
), pp. 
1139
1148
.10.1016/0045-7949(96)00291-X
31.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp. 
263
277
.10.1016/S0266-8920(01)00019-4
32.
Engelund
,
S.
, and
Rackwitz
,
R.
,
1993
, “
A Benchmark Study on Importance Sampling Techniques in Structural Reliability
,”
Struct. Saf.
,
12
(
4
), pp.
255
276
.
33.
Rahman
,
S.
, and
Xu
,
H. A.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp. 
393
408
. 0266-892010.1016/j.probengmech.2004.04.003
34.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Dimension Reduction Method for Reliability-Based Robust Design Optimization
,”
Spec. Issue Comput. Struct.: Struct. Multidiscip. Optim.
,
86
(
13–14
), pp. 
1550
1562
.10.1016/j.compstruc.2007.05.020
35.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Method Eng.
,
61
(
12
), pp. 
1992
2019
.10.1002/(ISSN)1097-0207
36.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
37.
Paffrath
,
M.
, and
Wever
,
U.
,
2007
, “
Adapted Polynomial Chaos Expansion for Failure Detection
,”
J. Comput. Phys.
,
226
, pp. 
263
281
.10.1016/j.jcp.2007.04.011
38.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
187
(
2
), pp. 
137
167
.
39.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
1998
, “
Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization
,”
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, AIAA Paper No. AIAA-98-4755.
40.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K.
,
2008
, “
A New Variable Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
J. Mech. Des.
,
130
(
11
), p. 
111401
.10.1115/1.2976449
41.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp. 
1
28
.10.1016/j.paerosci.2005.02.001
42.
Gu
,
L.
,
Yang
,
R. J.
,
Tho
,
C. H.
,
Makowskit
,
M.
,
Faruquet
,
O.
, and
Li
,
Y.
,
2001
, “
Optimization and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
,
26
(
4
), pp. 
348
360
.10.1504/IJVD.2001.005210
43.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp. 
2034
2046
. 0001-145210.2514/1.J051017
44.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p. 
121007
.10.1115/1.4007931
45.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
14
), pp. 
021006
.10.1115/DETC2013-12608
46.
Alseyabi
,
M. C.
,
2009
, “
Structuring a Probabilistic Model for Reliability Evaluation of Piping Subject to Corrosion-Fatigue Degradation
,” Ph.D. Dissertation,
University of Maryland
.
47.
Gutman
,
E. M.
,
1994
,
Mechanochmistry of Solid Surfaces
,
World Scientific Publications
,
Singapore
.
48.
Jiang
,
X.
,
Chu
,
W.
, and
Xiao
,
J.
,
1995
, “
Fractal Analysis of Orientation Effect on K1C and K1SCC
,”
Eng. Fract. Mech.
,
51
(
5
), pp. 
805
808
. 0013-794410.1016/0013-7944(94)00264-I
49.
Shin
,
K. I.
,
Park
,
J. H.
,
Kim
,
H.-D.
, and
Chung
,
H.-S.
,
2002
, “
Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes
,”
Nucl. Eng. Des.
,
214
(
1–2
), pp. 
91
101
. 0029-549310.1016/S0029-5493(02)00018-3
50.
Yang
,
Y.
, and
Zhang
,
T.
,
2013
, “
New Understanding of the Effect of Hydrostatic Pressure on the Corrosion of Ni-Cr-Mo-V High Strength Steel
,”
Corros. Sci.
,
73
, pp. 
250
261
. 0010-938X10.1016/j.corsci.2013.04.013
51.
Xu
,
L. Y.
, and
Cheng
,
F. Y.
,
2013
, “
Development of a Finite Element Model for Simulation and Prediction of Mechanoelectrochemical Effect of Pipeline Corrosion
,”
Corros. Sci.
,
73
, pp. 
150
160
. 0010-938X10.1016/j.corsci.2013.04.004
You do not currently have access to this content.