In modeling and simulation, model-form uncertainty arises from the lack of knowledge and simplification during the modeling process and numerical treatment for ease of computation. Traditional uncertainty quantification (UQ) approaches are based on assumptions of stochasticity in real, reciprocal, or functional spaces to make them computationally tractable. This makes the prediction of important quantities of interest, such as rare events, difficult. In this paper, a new approach to capture model-form uncertainty is proposed. It is based on fractional calculus, and its flexibility allows us to model a family of non-Gaussian processes, which provides a more generic description of the physical world. A generalized fractional Fokker–Planck equation (fFPE) is used to describe the drift-diffusion processes under long-range correlations and memory effects. A new model-calibration approach based on the maximum mutual information is proposed to reduce model-form uncertainty, where an optimization procedure is taken.

References

1.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
,
Princeton, NJ
.
2.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
3.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science Publishers
,
Yverdon-les-Bains, Switzerland
.
4.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley Interscience
,
New York
.
5.
Monje
,
C. A.
,
Chen
,
Y.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu-Batlle
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer
,
London
.
6.
Tenreiro Machado
,
J. A.
,
Silva
,
M. F.
,
Barbosa
,
R. S.
,
Jesus
,
I. S.
,
Reis
,
C. M.
,
Marcos
,
M. G.
, and
Galhano
,
A. F.
,
2010
, “
Some Applications of Fractional Calculus in Engineering
,”
Math. Prob. Eng.
,
2010
, pp.
1
34
.10.1155/2010/639801
7.
Sheng
,
H.
,
Chen
,
Y.
, and
Qiu
,
T.
,
2011
,
Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications
,
Springer
,
London
.
8.
Carpinteri
,
A.
,
Chiaia
,
B.
, and
Cornetti
,
P.
,
2003
, “
On the Mechanics of Quasi-Brittle Materials With a Fractal Microstructure
,”
Eng. Fract. Mech.
,
70
(
16
), pp. 
2321
2349
. 0013-794410.1016/S0013-7944(02)00220-5
9.
Lazopoulos
,
K. A.
,
2006
, “
Non-Local Continuum Mechanics and Fractional Calculus
,”
Mech. Res. Commun.
,
33
(
6
), pp. 
753
757
. 0093-641310.1016/j.mechrescom.2006.05.001
10.
Fogedby
,
H. C.
,
1994
, “
Lévy Flights in Random Environments
,”
Phys. Rev. Lett.
,
73
(
19
), pp. 
2517
2520
. 0031-900710.1103/PhysRevLett.73.2517
11.
Mainardi
,
F.
,
Luchko
,
Y.
, and
Pagnini
,
G.
,
2001
, “
The Fundamental Solution of the Space-Time Fractional Diffusion Equation
,”
Fract. Calc. Appl. Anal.
,
4
(
2
), pp. 
153
192
.
12.
Liu
,
Q.
,
Liu
,
F.
,
Turner
,
I. W.
, and
Anh
,
V. V.
,
2007
, “
Approximation of the Lévy–Feller Advection–Dispersion Process by Random Walk and Finite Difference Method
,”
J. Comput. Phys.
,
222
(
1
), pp. 
57
70
. 0021-999110.1016/j.jcp.2006.06.005
13.
Cottone
,
G.
, and
Di Paola
,
M.
,
2009
, “
On the Use of Fractional Calculus for the Probabilistic Characterization of Random Variables
,”
Probab. Eng. Mech.
,
24
(
3
), pp. 
321
330
. 0266-892010.1016/j.probengmech.2008.08.002
14.
Cottone
,
G.
,
Di Paola
,
M.
, and
Metzler
,
R.
,
2010
, “
Fractional Calculus Approach to the Statistical Characterization of Random Variables and Vectors
,”
Phys. A: Stat. Mech. Appl.
,
389
(
5
), pp. 
909
920
. 0378-437110.1016/j.physa.2009.11.018
15.
Di Paola
,
M.
, and
Pinnola
,
F. P.
,
2012
, “
Riesz Fractional Integrals and Complex Fractional Moments for the Probabilistic Characterization of Random Variables
,”
Prob. Eng. Mech.
,
29
, pp. 
149
156
. 0266-892010.1016/j.probengmech.2011.11.003
16.
Di Matteo
,
A.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2014
, “
Poisson White Noise Parametric Input and Response by Using Complex Fractional Moments
,”
Prob. Eng. Mech.
,
38
, pp. 
119
126
. 0266-892010.1016/j.probengmech.2014.07.003
17.
Di Paola
,
M.
,
2014
, “
Fokker Planck Equation Solved in Terms of Complex Fractional Moments
,”
Prob. Eng. Mech.
,
38
, pp. 
70
76
. 0266-892010.1016/j.probengmech.2014.09.003
18.
Laskin
,
N.
,
2000
, “
Fractional Quantum Mechanics and Lévy Path Integrals
,”
Phys. Lett. A
,
268
(
4
), pp. 
298
305
. 0375-960110.1016/S0375-9601(00)00201-2
19.
Jenkinson
,
A. F.
,
1955
, “
The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements
,”
Q. J. Roy. Meteorolog. Soc.
,
81
(
348
), pp. 
158
171
. 0035-900910.1002/(ISSN)1477-870X
20.
Hosking
,
J. R. M.
,
Wallis
,
J. R.
, and
Wood
,
E. F.
,
1985
, “
Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments
,”
Technometrics
,
27
(
3
), pp. 
251
261
. 0040-170610.1080/00401706.1985.10488049
21.
Wyss
,
W.
,
1986
, “
The Fractional Diffusion Equation
,”
J. Math. Phys.
,
27
(
11
), pp. 
2782
2785
.10.1063/1.527251
22.
Meerschaert
,
M. M.
,
Benson
,
D. A.
, and
Bäumer
,
B.
,
1999
, “
Multidimensional Advection and Fractional Dispersion
,”
Phys. Rev. E
,
59
(
5
), pp. 
5026
5028
. 1539-375510.1103/PhysRevE.59.5026
23.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
,
2000
, “
The Fractional-Order Governing Equation of Lévy Motion
,”
Water Resour. Res.
,
36
(
6
), pp. 
1413
1423
. 0043-139710.1029/2000WR900032
24.
Metzler
,
R.
,
Barkai
,
E.
, and
Klafter
,
J.
,
1999
, “
Deriving Fractional Fokker–Planck Equations from a Generalised Master Equation
,”
Europhys. Lett.
,
46
(
4
), pp. 
431
436
. 0295-507510.1209/epl/i1999-00279-7
25.
Liu
,
F.
,
Anh
,
V. V.
,
Turner
,
I.
, and
Zhuang
,
P.
,
2003
, “
Time Fractional Advection-Dispersion Equation
,”
J. Appl. Math. Comput.
,
13
(
1–2
), pp. 
233
245
.10.1007/BF02936089
26.
Huang
,
F.
, and
Liu
,
F.
,
2005
, “
The Fundamental Solution of the Space-Time Fractional Advection–Dispersion Equation
,”
J. Appl. Math. Comput.
,
18
(
1–2
), pp. 
339
350
.10.1007/BF02936577
27.
Liu
,
F.
,
Zhuang
,
P.
,
Anh
,
V.
,
Turner
,
I.
, and
Burrage
,
K.
,
2007
, “
Stability and Convergence of the Difference Methods for the Space–Time Fractional Advection–Diffusion Equation
,”
Appl. Math. Comput.
,
191
(
1
), pp. 
12
20
. 0096-300310.1016/j.amc.2006.08.162
28.
Yıldırım
,
A.
, and
Koçak
,
H.
,
2009
, “
Homotopy Perturbation Method for Solving the Space–Time Fractional Advection–Dispersion Equation
,”
Adv. Water Resour.
,
32
(
12
), pp. 
1711
1716
. 0309-170810.1016/j.advwatres.2009.09.003
29.
Meerschaert
,
M. M.
, and
Tadjeran
,
C.
,
2004
, “
Finite Difference Approximations for Fractional Advection–Dispersion Flow Equations
,”
J. Comput. Appl. Math.
,
172
(
1
), pp. 
65
77
. 0377-042710.1016/j.cam.2004.01.033
30.
Jafari
,
H.
, and
Momani
,
S.
,
2007
, “
Solving Fractional Diffusion and Wave Equations by Modified Homotopy Perturbation Method
,”
Phys. Lett. A
,
370
(
5
), pp. 
388
396
. 0375-960110.1016/j.physleta.2007.05.118
31.
Chechkin
,
A.
,
Gonchar
,
V.
,
Klafter
,
J.
,
Metzler
,
R.
, and
Tanatarov
,
L.
,
2002
, “
Stationary States of Non-Linear Oscillators Driven by Lévy Noise
,”
Chem. Phys.
,
284
(
1
), pp. 
233
251
. 0301-010410.1016/S0301-0104(02)00551-7
32.
Alotta
,
G.
, and
Di Paola
,
M.
,
2015
, “
Probabilistic Characterization of Nonlinear Systems Under α-Stable White Noise Via Complex Fractional Moments
,”
Phys. A: Stat. Mech. Appl.
,
420
, pp. 
265
276
. 0378-437110.1016/j.physa.2014.10.091
33.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
West Sussex, UK
.
34.
Hu
,
J.
,
Wang
,
Y.
,
Cheng
,
A.
, and
Zhong
,
Z.
,
2015
, “
Sensitivity Analysis in Quantified Interval Constraint Satisfaction Problems
,”
ASME J. Mech. Des.
,
137
(
4
), p. 
041701
.10.1115/1.4029513
35.
Gorenflo
,
R.
,
Loutchko
,
J.
, and
Luchko
,
Y.
,
2002
, “
Computation of the Mittag-Leffler Function Eα, β(z) and Its Derivative
,”
Fract. Calc. Appl. Anal.
,
5
(
4
), pp. 
491
518
.
36.
Atanacković
,
T. M.
,
Konjik
,
S.
, and
Pilipović
,
S.
,
2008
, “
Variational Problems With Fractional Derivatives: Euler–Lagrange Equations
,”
J. Phys. A: Math. Theor.
,
41
(
9
), p. 
095201
.10.1088/1751-8113/41/9/095201
37.
Djordjevic
,
V. D.
, and
Atanackovic
,
T. M.
,
2008
, “
Similarity Solutions to Nonlinear Heat Conduction and Burgers/Korteweg–deVries Fractional Equations
,”
J. Comput. Appl. Math.
,
222
(
2
), pp. 
701
714
. 0377-042710.1016/j.cam.2007.12.013
38.
Pooseh
,
S.
,
Almeida
,
R.
, and
Torres
,
D. F.
,
2013
, “
Numerical Approximations of Fractional Derivatives With Applications
,”
Asian J. Control
,
15
(
3
), pp. 
698
712
.10.1002/asjc.2013.15.issue-3
You do not currently have access to this content.