Abstract

Modeling the resilience of interdependent critical infrastructure (ICI) requires a careful assessment of interdependencies as these systems are becoming increasingly interconnected. The interdependent connections across ICIs are often subject to uncertainty due to the lack of relevant data. Yet, this uncertainty has not been properly characterized. This paper develops an approach to model the resilience of ICIs founded in probabilistic graphical models. The uncertainty of interdependency links between ICIs is modeled using stochastic block models (SBMs). Specifically, the approach estimates the probability of links between individual systems considered as blocks in the SBM. The proposed model employs several attributes as predictors. Two recovery strategies based on static and dynamic component importance ranking are developed and compared. The proposed approach is illustrated with a case study of the interdependent water and power networks in Shelby County, TN. Results show that the probability of interdependency links varies depending on the predictors considered in the estimation. Accounting for the uncertainty in interdependency links allows for a dynamic recovery process. A recovery strategy based on dynamically updated component importance ranking accelerates recovery, thereby improving the resilience of ICIs.

References

1.
Pederson
,
P.
,
Dudenhoeffer
,
D.
,
Hartley
,
S.
, and
Permann
,
M.
,
2006
, “
Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research
,” Idaho National Laboratory, Idaho Falls, ID, Report No. INL/EXT-06-11464, p.
27
.
2.
Vespignani
,
A.
,
2010
, “
Complex Networks: The Fragility of Interdependency
,”
Nature
,
464
(
7291
), p.
984
.10.1038/464984a
3.
Bashan
,
A.
,
Berezin
,
Y.
,
Buldyrev
,
S. V.
, and
Havlin
,
S.
,
2013
, “
The Extreme Vulnerability of Interdependent Spatially Embedded Networks
,”
Nat. Phys.
,
9
(
10
), pp.
667
672
.10.1038/nphys2727
4.
Danziger
,
M. M.
,
Shekhtman
,
L. M.
,
Bashan
,
A.
,
Berezin
,
Y.
, and
Havlin
,
S.
,
2016
, “
Vulnerability of Interdependent Networks and Networks of Networks
,”
Interconnected Networks
,
Springer
,
Cham, Switzerland
, pp.
79
99
.
5.
Rinaldi
,
S. M.
,
2004
, “
Modeling and Simulating Critical Infrastructures and Their Interdependencies
,”
Proceedings of the 37th Annual Hawaii International Conference on System Sciences
, Big Island, HI, Jan. 5–8, p.
8
.10.1109/HICSS.2004.1265180
6.
Rinaldi
,
S. M.
,
Peerenboom
,
J. P.
, and
Kelly
,
T. K.
,
2001
, “
Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies
,”
IEEE Control Syst.
,
21
(
6
), pp.
11
25
.10.1109/37.969131
7.
Zimmerman
,
R.
,
2001
, “
Social Implications of Infrastructure Network Interactions
,”
J. Urban Technol.
,
8
(
3
), pp.
97
119
.10.1080/106307301753430764
8.
Dudenhoeffer
,
D. D.
,
Permann
,
M. R.
, and
Manic
,
M.
,
2006
, “
CIMS: A Framework for Infrastructure Interdependency Modeling and Analysis
,”
Proceedings of the 38th Conference on Winter Simulation, Winter Simulation Conference
, Monterey, CA, Dec. 3–6, pp.
478
485
.10.1109/WSC.2006.323119
9.
Lee Ii
,
E. E.
,
Mitchell
,
J. E.
, and
Wallace
,
W. A.
,
2007
, “
Restoration of Services in Interdependent Infrastructure Systems: A Network Flows Approach
,”
IEEE Trans. Syst., Man, Cybern., Part C
,
37
(
6
), pp.
1303
1317
.10.1109/TSMCC.2007.905859
10.
Goldbeck
,
N.
,
Angeloudis
,
P.
, and
Ochieng
,
W. Y.
,
2019
, “
Resilience Assessment for Interdependent Urban Infrastructure Systems Using Dynamic Network Flow Models
,”
Reliab. Eng. Syst. Saf.
,
188
, pp.
62
79
.10.1016/j.ress.2019.03.007
11.
González
,
A. D.
,
Dueñas-Osorio
,
L.
,
Sánchez-Silva
,
M.
, and
Medaglia
,
A. L.
,
2016
, “
The Interdependent Network Design Problem for Optimal Infrastructure System Restoration
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
31
(
5
), pp.
334
350
.10.1111/mice.12171
12.
Ouyang
,
M.
,
2014
, “
Review on Modeling and Simulation of Interdependent Critical Infrastructure Systems
,”
Reliab. Eng. Syst. Saf.
,
121
, pp.
43
60
.10.1016/j.ress.2013.06.040
13.
Dueñas-Osorio
,
L.
,
Craig
,
J. I.
,
Goodno
,
B. J.
, and
Bostrom
,
A.
,
2007
, “
Interdependent Response of Networked Systems
,”
J. Infrastruct. Syst.
,
13
(
3
), pp.
185
194
.10.1061/(ASCE)1076-0342(2007)13:3(185)
14.
Hernandez-Fajardo
,
I.
, and
Dueñas-Osorio
,
L.
,
2013
, “
Probabilistic Study of Cascading Failures in Complex Interdependent Lifeline Systems
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
260
272
.10.1016/j.ress.2012.10.012
15.
Ouyang
,
M.
, and
Wang
,
Z.
,
2015
, “
Resilience Assessment of Interdependent Infrastructure Systems: With a Focus on Joint Restoration Modeling and Analysis
,”
Reliab. Eng. Syst. Saf.
,
141
, pp.
74
82
.10.1016/j.ress.2015.03.011
16.
Chai
,
W. K.
,
Kyritsis
,
V.
,
Katsaros
,
K. V.
, and
Pavlou
,
G.
,
2016
, “
Resilience of Interdependent Communication and Power Distribution Networks Against Cascading Failures
,”
IFIP Networking Conference (IFIP Networking) and Workshops
, Vienna, Austria, May 17–19, pp.
37
45
.10.1109/IFIPNetworking.2016.7497224
17.
Guidotti
,
R.
,
Chmielewski
,
H.
,
Unnikrishnan
,
V.
,
Gardoni
,
P.
,
McAllister
,
T.
, and
van de Lindt
,
J.
,
2016
, “
Modeling the Resilience of Critical Infrastructure: The Role of Network Dependencies
,”
Sustainable Resilient Infrastruct.
,
1
(
3–4
), pp.
153
168
.10.1080/23789689.2016.1254999
18.
Liu
,
X.
,
Ferrario
,
E.
, and
Zio
,
E.
,
2017
, “
Resilience Analysis Framework for Interconnected Critical Infrastructures
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B
,
3
(
2
), p.
021001
.10.1115/1.4035728
19.
Sharma
,
N.
,
Tabandeh
,
A.
, and
Gardoni
,
P.
,
2019
, “
Recovery Optimization of Interdependent Infrastructure: A Multi-Scale Approach
,” , Seoul, South Korea, May 26–30.
20.
Di Muro
,
M.
,
La Rocca
,
C.
,
Stanley
,
H.
,
Havlin
,
S.
, and
Braunstein
,
L.
,
2016
, “
Recovery of Interdependent Networks
,”
Sci. Rep.
,
6
(
1
), p.
22834
.10.1038/srep22834
21.
Ouyang
,
M.
,
Hong
,
L.
,
Mao
,
Z.-J.
,
Yu
,
M.-H.
, and
Qi
,
F.
,
2009
, “
A Methodological Approach to Analyze Vulnerability of Interdependent Infrastructures
,”
Simul. Modell. Pract. Theory
,
17
(
5
), pp.
817
828
.10.1016/j.simpat.2009.02.001
22.
Zhang
,
Y.
,
Yang
,
N.
, and
Lall
,
U.
,
2016
, “
Modeling and Simulation of the Vulnerability of Interdependent Power-Water Infrastructure Networks to Cascading Failures
,”
J. Syst. Sci. Syst. Eng.
,
25
(
1
), pp.
102
118
.10.1007/s11518-016-5295-3
23.
Almoghathawi
,
Y.
,
Barker
,
K.
, and
Albert
,
L. A.
,
2019
, “
Resilience-Driven Restoration Model for Interdependent Infrastructure Networks
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
12
23
.10.1016/j.ress.2018.12.006
24.
Garvey
,
M. D.
,
Carnovale
,
S.
, and
Yeniyurt
,
S.
,
2015
, “
An Analytical Framework for Supply Network Risk Propagation: A Bayesian Network Approach
,”
Eur. J. Oper. Res.
,
243
(
2
), pp.
618
627
.10.1016/j.ejor.2014.10.034
25.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Modeling and Quantification for Engineered Systems Using Bayesian Networks
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031404
.10.1115/1.4032399
26.
Hosseini
,
S.
, and
Barker
,
K.
,
2016
, “
Modeling Infrastructure Resilience Using Bayesian Networks: A Case Study of Inland Waterway Ports
,”
Comput. Ind. Eng.
,
93
, pp.
252
266
.10.1016/j.cie.2016.01.007
27.
Chen
,
C.
,
Tong
,
H.
,
Xie
,
L.
,
Ying
,
L.
, and
He
,
Q.
,
2016
, “
Fascinate: Fast Cross-Layer Dependency Inference on Multi-Layered Networks
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, San Francisco, CA, pp.
765
774
.10.1145/2939672.2939784
28.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.10.1016/j.strusafe.2008.06.020
29.
Yu
,
J.-Z.
, and
Baroud
,
H.
,
2019
, “
Quantifying Community Resilience Using Hierarchical Bayesian Kernel Methods: A Case Study on Recovery From Power Outages
,”
Risk Anal.
,
39
(
9
), pp.
1930
1948
.10.1111/risa.13343
30.
Anderson
,
C. J.
,
Wasserman
,
S.
, and
Faust
,
K.
,
1992
, “
Building Stochastic Blockmodels
,”
Soc. Networks
,
14
(
1–2
), pp.
137
161
.10.1016/0378-8733(92)90017-2
31.
Holland
,
P. W.
,
Laskey
,
K. B.
, and
Leinhardt
,
S.
,
1983
, “
Stochastic Blockmodels: First Steps
,”
Soc. Networks
,
5
(
2
), pp.
109
137
.10.1016/0378-8733(83)90021-7
32.
Žiberna
,
A.
,
2014
, “
Blockmodeling of Multilevel Networks
,”
Soc. Networks
,
39
, pp.
46
61
.10.1016/j.socnet.2014.04.002
33.
Barbillon
,
P.
,
Donnet
,
S.
,
Lazega
,
E.
, and
Bar-Hen
,
A.
,
2017
, “
Stochastic Block Models for Multiplex Networks: An Application to a Multilevel Network of Researchers
,”
J. R. Stat. Soc.: Ser. A
,
180
(
1
), pp.
295
314
.10.1111/rssa.12193
34.
Abbe
,
E.
,
2018
, “
Community Detection and Stochastic Block Models: Recent Developments
,”
J. Mach. Learn. Res.
,
18
(
177
), pp.
1
86
.
35.
Xu
,
K.
,
2015
, “
Stochastic Block Transition Models for Dynamic Networks
,” , San Diego, CA, May 9–12, pp.
1079
1087
.
36.
Kolaczyk
,
E. D.
,
2017
,
Topics at the Frontier of Statistics and Network Analysis:(Re) Visiting the Foundations
,
Cambridge University Press
, Cambridge, UK.
37.
Mahoney
,
M. W.
,
2016
, “
Lecture Notes in Spectral Graph Methods
,” preprint arXiv:1608.04845.
38.
Holling
,
C. S.
,
1973
, “
Resilience and Stability of Ecological Systems
,”
Annu. Rev. Ecol. Syst.
,
4
(
1
), pp.
1
23
.10.1146/annurev.es.04.110173.000245
39.
Ayyub
,
B. M.
,
2015
, “
Practical Resilience Metrics for Planning, Design, and Decision Making
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
1
(
3
), p.
04015008
.10.1061/AJRUA6.0000826
40.
National Infrastructure Advisory Council
,
2009
, “
Critical Infrastructure Resilience: Final Report and Recommendations
,” National Infrastructure Advisory Council, U. S. Department of Homeland Security, Washington, DC, Report.
41.
National Research Council
,
2012
,
Disaster Resilience: A National Imperative
,
National Academies Press
,
Washington, DC
.
42.
Presidential Policy Directive
,
2013
,
Critical Infrastructure Security and Resilience
,
White House
, Washington, DC.
43.
Haimes
,
Y. Y.
,
2009
, “
On the Definition of Resilience in Systems
,”
Risk Anal.: An Int. J.
,
29
(
4
), pp.
498
501
.10.1111/j.1539-6924.2009.01216.x
44.
Henry
,
D.
, and
Ramirez-Marquez
,
J. E.
,
2012
, “
Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time
,”
Reliab. Eng. Syst. Saf.
,
99
, pp.
114
122
.10.1016/j.ress.2011.09.002
45.
Zhang
,
X.
,
Mahadevan
,
S.
,
Sankararaman
,
S.
, and
Goebel
,
K.
,
2018
, “
Resilience-Based Network Design Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
364
379
.10.1016/j.ress.2017.09.009
46.
Hasan
,
A.
,
Zaki
,
M.
, and
J
,
M.
,
2011
, “
A Survey of Link Prediction in Social Networks
,”
Social Network Data Analytics
,
Springer
, Boston, MA, pp.
243
275
.
47.
Cutter
,
S. L.
,
Boruff
,
B. J.
, and
Shirley
,
W. L.
,
2003
, “
Social Vulnerability to Environmental Hazards
,”
Soc. Sci. Q.
,
84
(
2
), pp.
242
261
.10.1111/1540-6237.8402002
48.
Highfield
,
W. E.
,
Peacock
,
W. G.
, and
Van Zandt
,
S.
,
2014
, “
Mitigation Planning: Why Hazard Exposure, Structural Vulnerability, and Social Vulnerability Matter
,”
J. Plann. Educ. Res.
,
34
(
3
), pp.
287
300
.10.1177/0739456X14531828
49.
Peacock
,
W. G.
,
Van Zandt
,
S.
,
Zhang
,
Y.
, and
Highfield
,
W. E.
,
2014
, “
Inequities in Long-Term Housing Recovery After Disasters
,”
J. Am. Plann. Assoc.
,
80
(
4
), pp.
356
371
.10.1080/01944363.2014.980440
50.
Baroud
,
H.
, and
Barker
,
K.
,
2018
, “
A Bayesian Kernel Approach to Modeling Resilience-Based Network Component Importance
,”
Reliab. Eng. Syst. Saf.
,
170
, pp.
10
19
.10.1016/j.ress.2017.09.022
51.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.10.1007/BF01386390
52.
Floyd
,
R. W.
,
1962
, “
Algorithm 97: Shortest Path
,”
Commun. ACM
,
5
(
6
), p.
345
.10.1145/367766.368168
53.
Tarjan
,
R.
,
1972
, “
Depth-First Search and Linear Graph Algorithms
,”
SIAM J. Comput.
,
1
(
2
), pp.
146
160
.10.1137/0201010
54.
FEMA
,
2013
,
Multi-Hazard Loss Estimation Methodology: Earthquake Model
,
Federal Emergency Management Agency
,
Washington, DC
.
55.
Shinozuka
,
M.
,
Rose
,
A.
, and
Eguchi
,
R.
,
1998
, “
Engineering and Socioeconomic Impact of Earthquakes: An Analysis of Electricity Lifeline Disruptions in the New Madrid Area Monograph 2
,” Multidisciplinary Center for Earthquake Engineering Research, Red Jacket Quadrangle, State University of New York at Buffalo, Buffalo, NY.
56.
González
,
A. D.
,
Chapman
,
A.
,
Dueñas-Osorio
,
L.
,
Mesbahi
,
M.
, and
D'Souza
,
R. M.
,
2017
, “
Efficient Infrastructure Restoration Strategies Using the Recovery Operator
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
32
(
12
), pp.
991
1006
.10.1111/mice.12314
57.
Census Bureau
,
2018
, “
Census Data
,” Department of Commerce, Census Bureau, Washington, DC, accessed Mar. 2, 2020, https://www.census.gov/quickfacts/fact/table/US/PST045219
58.
CDC
,
2016
, “
Social Vulnerability Index (SVI)
,” Department of Health and Human Services, Washington, DC, accessed Mar. 2, 2019, https://svi.cdc.gov/data-and-tools-download.html
59.
Harmsen
,
S.
,
Frankel
,
A.
, and
Petersen
,
M.
,
2003
, “
Deaggregation of US Seismic Hazard Sources: The 2002 Update
,” U.S. Geological Survey, Reston, VA, Report No. 2003-03-440.
60.
FEMA
,
2013
, “
HAZUS-MH 2.1 User Manual: Earthquake Model Technical Manual
,” Federal Emergency Management Agency, Washington, DC.
61.
Zhang
,
D-M.
,
Du
,
F.
,
Huang
,
H.
,
Zhang
,
F.
,
Ayyub
,
B. M.
, and
Beer
,
M.
,
2018
, “
Resiliency Assessment of Urban Rail Transit Networks: Shanghai Metro as an Example
,”
Saf. Sci.
,
106
, pp.
230
243
.10.1016/j.ssci.2018.03.023
You do not currently have access to this content.