Abstract

The study of the flow interaction and the heat transfer between air jets and a surface is of paramount importance in industrial processes that apply air jet impingement. To ensure a good performance of the process, high heat transfer rates and uniformization of the flow over the target plate are required. In this work, a particle image velocimetry (PIV) technique was implemented for the measurement of the flow velocity fields. However, as any real experiment, the values recorded by the PIV method are subjected to several errors that compromise the reliability and accuracy of the measurements. These errors can have different sources, from the installation and alignment to the particles seeding and calibration procedure. To maximize the accuracy of the experimental results, this paper focuses on the identification of measurement errors and uncertainty quantification of an experimental setup purposely built for the analysis of the interaction between air jets and a target surface. This paper presents an analysis of the system, and the source of errors are identified, quantified, and, when possible, corrected. The particle seeding is characterized, and its efficiency for the flow tracking is analyzed. The setup was tested to fully characterize the flow field in terms of mean velocity profile and turbulence intensity over a wide range of Reynolds numbers and temperature. Several velocity fields are then measured until convergence of the flow quantities is reached. The combination of these measurements with high spatial resolution and low measurement errors allows us to obtain accurate and precise measurements.

References

References
1.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
(
6
), pp.
565
631
.10.1016/S0065-2717(06)39006-5
2.
Dewan
,
A.
,
Dutta
,
R.
, and
Srinivasan
,
B.
,
2012
, “
Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
447
460
.10.1080/01457632.2012.614154
3.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
4.
Moffat
,
R. J.
,
1988
, “
Describing the  Uncertainties in Experimental Results
,” Exp. Therm. Fluid Sci., 1(1), pp.
3
17
.
5.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
,
Takeuchi
,
D. I.
, and
Berry
,
R. A.
,
1980
, “
Multiple Jet Impingement Heat Transfer Characteristic—Experimental Investigation of In-Line and Staggered Arrays With Crossflow
,” NASA Contract. Reports, vol. Jan, No. 3217, p.
84
.
6.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
7.
Zhou
,
D. W.
, and
Lee
,
S. J.
,
2007
, “
Forced Convective Heat Transfer With Impinging Rectangular Jets
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1916
1926
.10.1016/j.ijheatmasstransfer.2006.09.022
8.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.10.1115/1.4001633
9.
Caliskan
,
S.
, and
Baskaya
,
S.
,
2012
, “
Experimental Investigation of Impinging Jet Array Heat Transfer From a Surface With V-Shaped and Convergent-Divergent Ribs
,”
Int. J. Therm. Sci.
,
59
, pp.
234
246
.10.1016/j.ijthermalsci.2012.04.013
10.
Brakmann
,
R.
,
Chen
,
L.
,
Weigand
,
B.
, and
Crawford
,
M.
,
2016
, “
Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins 1
,”
ASME J. Turbomach.
,
138
(
11
), p.
111010
.10.1115/1.4033670
11.
Yamane
,
Y.
,
Ichikawa
,
Y.
,
Yamamoto
,
M.
, and
Honami
,
S.
,
2012
, “
Effect of Injection Parameters on Jet Array Impingement Heat Transfer
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
4
(
1
), pp.
27
34
.https://www.researchgate.net/publication/269688182_Effect_of_Injection_Parameters_on_Jet_Array_Impingement_Heat_Transfer
12.
Li
,
W.
,
Xu
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle
,”
ASME J. Heat Transfer
,
139
(
1
), p.
12201
.10.1115/1.4034165
13.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer
,
Berlin
.
14.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1703
1713
.10.1016/S0017-9310(02)00479-9
15.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
1392
. 10.1088/0957-0233/8/12/002
16.
JGCM
,
2012
, “
International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM)
,” 3rd ed., JCGM, Saint-Cloud, France, Standard No. 200:2012.
17.
ASME
,
1998
,
Test Uncertainty. Instruments and Apparatus
,
The American Society of Mechanical Engineers
,
New York
.
18.
Sabharwall
,
P.
,
Conder
,
T.
,
Skifton
,
R.
,
Stoots
,
C.
, and
Kim
,
E. S.
,
2013
, “
PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility
,” ID.
19.
Harris
,
J. R.
,
2012
, “
Investigation of Relative Importance of Some Error Sources in Particle Image Velocimetry
,”
ASME
Paper No. FEDSM2012-72442.10.1115/FEDSM2012-72442
20.
White
,
D. J.
,
Take
,
W. A.
, and
Bolton
,
M. D.
,
2003
, “
Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry
,”
Géotechnique
,
53
(
7
), pp.
619
631
.10.1680/geot.2003.53.7.619
21.
JCGM
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” JCGM, Saint-Cloud, France, Standard No. 100:2008.
22.
Sciacchitano
,
A.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2013
, “
PIV Uncertainty Quantification by Image
,”
Meas. Sci. Technol.
,
24
(
4
), p.
045302
.10.1088/0957-0233/24/4/045302
23.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
, and
Kähler
,
C. J.
,
2018
,
Particle Image Velocimetry
, 3rd ed.,
Springer
,
Cham, Switzerland
.
24.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry
,
Heidelberg, Germany
.
25.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals and Applications
,
New York
.
26.
Merzkirch
,
W.
,
1987
,
Flow Visualization
, 2nd ed.,
Academic Press
,
London
.
27.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
. 10.1088/0957-0233/8/12/005
28.
Grant
,
I.
,
1997
, “
Particle Image Velocimetry: A Review
,”
Proc. Inst. Mech. Eng.
,
211
(
1
), pp.
55
76
.10.1243/0954406971521665
29.
Barbosa
,
F. V.
,
2018
, “
An Experimental Setup for Multiple Air Jet Impingement Over a Surface
,”
ASME Paper No. IMECE2018-87995
.10.1115/IMECE2018-87995
30.
Rawle
,
A.
,
2017
, “
Basic Principles of Particle Size Analysis
,”
UK
.
31.
Smith
,
B. L.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
.10.1088/0957-0233/24/6/065301
32.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
33.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
34.
Dantec Dynamics,
2016
, “
Dynamic Studio, User’s Guide
,”
Dantec Dynamics
,
Skovlunde, Denmark
.
35.
Klopfenstein
,
R.
, Jr.
,
1998
, “
Air Velocity and Flow Measurement Using a Pitot Tube
,”
ISA Trans
,
37
(
4
), pp.
257
263
.10.1016/S0019-0578(98)00036-6
You do not currently have access to this content.