Abstract

Reliability assessment of linear discretized structures with interval parameters subjected to stationary Gaussian multicorrelated random excitation is addressed. The interval reliability function for the extreme value stress process is evaluated under the Poisson assumption of independent up-crossing of a critical threshold. Within the interval framework, the range of stress-related quantities may be significantly overestimated as a consequence of the so-called dependency phenomenon, which arises due to the inability of the classical interval analysis to treat multiple occurrences of the same interval variables as dependent ones. To limit undesirable conservatism in the context of interval reliability analysis, a novel sensitivity-based procedure relying on a combination of the interval rational series expansion and the improved interval analysis via extra unitary interval is proposed. This procedure allows us to detect suitable combinations of the endpoints of the uncertain parameters which yield accurate estimates of the lower bound and upper bound of the interval reliability function for the extreme value stress process. Furthermore, sensitivity analysis enables to identify the most influential parameters on structural reliability. A numerical application is presented to demonstrate the accuracy and efficiency of the proposed method as well as its usefulness in view of decision-making in engineering practice.

References

References
1.
Ben-Haim
,
Y.
,
1994
, “
A Non-Probabilistic Concept of Reliability
,”
Struct. Saf.
,
14
(
4
), pp.
227
245
.10.1016/0167-4730(94)90013-2
2.
Elishakoff
,
I.
,
1995
, “
Essay on Uncertainties in Elastic and Viscoelastic Structures: From A. M. Freudenthal's Criticisms to Modern Convex Modeling
,”
Comput. Struct.
,
56
(
6
), pp.
871
895
.10.1016/0045-7949(94)00499-S
3.
Elishakoff
,
I.
, and
Ohsaki
,
M.
,
2010
,
Optimization and Anti-Optimization of Structures Under Uncertainty
,
Imperial College Press
,
London
.
4.
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
,
2002
, “
Efficient Estimation of Structural Reliability for Problems With Uncertain Intervals
,”
Comput. Struct.
,
80
(
12
), pp.
1103
1112
.10.1016/S0045-7949(02)00069-X
5.
Qiu
,
Z.
,
Yang
,
D.
, and
Elishakoff
,
I.
,
2008
, “
Probabilistic Interval Reliability of Structural Systems
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2850
2860
.10.1016/j.ijsolstr.2008.01.005
6.
Zhang
,
H.
,
Mullen
,
R. L.
, and
Muhanna
,
R. L.
,
2010
, “
Interval Monte Carlo Methods for Structural Reliability
,”
Struct. Saf.
,
32
(
3
), pp.
183
190
.10.1016/j.strusafe.2010.01.001
7.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2012
, “
The Encounter of Interval and Probabilistic Approaches to Structural Reliability at the Design Point
,”
Comput. Methods Appl. Mech. Eng.
,
225–228
, pp.
74
94
.10.1016/j.cma.2012.03.020
8.
Zhang
,
H.
,
2012
, “
Interval Importance Sampling Method for Finite Element-Based Structural Reliability Assessment Under Parameter Uncertainties
,”
Struct. Saf.
,
38
, pp.
1
10
.10.1016/j.strusafe.2012.01.003
9.
Hurtado
,
J. E.
,
2013
, “
Assessment of Reliability Intervals Under Input Distributions With Uncertain Parameters
,”
Probab. Eng. Mech.
,
32
, pp.
80
92
.10.1016/j.probengmech.2013.01.004
10.
Jiang
,
C.
,
Bi
,
R. G.
,
Lu
,
G. Y.
, and
Han
,
X.
,
2013
, “
Structural Reliability Analysis Using Non-Probabilistic Convex Model
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
83
98
.10.1016/j.cma.2012.10.020
11.
Zhang
,
H.
,
Dai
,
H.
,
Beer
,
M.
, and
Wang
,
W.
,
2013
, “
Structural Reliability Analysis on the Basis of Small Samples: An Interval quasi-Monte Carlo Method
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
137
151
.10.1016/j.ymssp.2012.03.001
12.
Alvarez
,
D. A.
, and
Hurtado
,
J. E.
,
2014
, “
An Efficient Method for the Estimation of Structural Reliability Intervals With Random Sets, Dependence Modeling and Uncertain Inputs
,”
Comput. Struct.
,
142
, pp.
54
63
.10.1016/j.compstruc.2014.07.006
13.
Bai
,
Y. C.
,
Han
,
X.
,
Jiang
,
C.
, and
Bi
,
R. G.
,
2014
, “
A Response-Surface-Based Structural Reliability Analysis Method by Using Non-Probability Convex Model
,”
Appl. Math. Model.
,
38
(
15–16
), pp.
3834
3847
.10.1016/j.apm.2013.11.053
14.
Jahani
,
E.
,
Muhanna
,
R. L.
,
Shayanfar
,
M. A.
, and
Barkhordari
,
M. A.
,
2014
, “
Reliability Assessment With Fuzzy Random Variables Using Interval Monte Carlo Simulation
,”
Comput. Aided Civ. Infrastruct Eng.
,
29
(
3
), pp.
208
220
.10.1111/mice.12028
15.
Jiang
,
C.
,
Ni
,
B. Y.
,
Han
,
X.
, and
Tao
,
Y. R.
,
2014
, “
Non-Probabilistic Convex Model Process: A New Method of Time-Variant Uncertainty Analysis and Its Application to Structural Dynamic Reliability Problems
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
656
676
.10.1016/j.cma.2013.10.016
16.
Wang
,
L.
,
Wang
,
X.
,
Li
,
Y.
, and
Hu
,
J.
,
2019
, “
A Non-Probabilistic Time-Variant Reliable Control Method for Structural Vibration Suppression Problems With Interval Uncertainties
,”
Mech. Syst. Signal Process.
,
115
, pp.
301
322
.10.1016/j.ymssp.2018.05.039
17.
Aven
,
T.
,
2011
, “
Interpretations of Alternative Uncertainty Representations in a Reliability and Risk Analysis Context
,”
Reliab. Eng. Syst. Saf.
,
96
(
3
), pp.
353
360
.10.1016/j.ress.2010.11.004
18.
Beer
,
M.
,
Zhang
,
Y.
,
Quek
,
S. T.
, and
Phoon
,
K. K.
,
2013
, “
Reliability Analysis With Scarce Information: Comparing Alternative Approaches in a Geotechnical Engineering Context
,”
Struct. Saf.
,
41
, pp.
1
10
.10.1016/j.strusafe.2012.10.003
19.
Kang
,
Z.
,
Luo
,
Y.
, and
Li
,
A.
,
2011
, “
On Non-Probabilistic Reliability-Based Design Optimization of Structures With Uncertain-but-Bounded Parameters
,”
Struct Saf.
,
33
(
3
), pp.
196
205
.10.1016/j.strusafe.2011.03.002
20.
Guo
,
S.-X.
, and
Lu
,
Z.-Z.
,
2015
, “
A Non-Probabilistic Robust Reliability Method for Analysis and Design Optimization of Structures With Uncertain-But-Bounded Parameters
,”
Appl. Math. Model.
,
39
(
7
), pp.
1985
2002
.10.1016/j.apm.2014.10.026
21.
Adduri
,
P. R.
, and
Penmetsa
,
R. C.
,
2009
, “
System Reliability Analysis for Mixed Uncertain Variables
,”
Struct. Saf.
,
31
(
5
), pp.
375
382
.10.1016/j.strusafe.2009.02.001
22.
Luo
,
Y.
,
Kang
,
Z.
, and
Li
,
A.
,
2009
, “
Structural Reliability Assessment Based on Probability and Convex Set Mixed Model
,”
Comput. Struct.
,
87
(
21–22
), pp.
1408
1415
.10.1016/j.compstruc.2009.06.001
23.
Wang
,
J.
, and
Qiu
,
Z.
,
2010
, “
The Reliability Analysis of Probabilistic and Interval Hybrid Structural System
,”
Appl. Math. Model.
,
34
(
11
), pp.
3648
3658
.10.1016/j.apm.2010.03.015
24.
Alibrandi
,
U.
, and
Koh
,
C. G.
,
2015
, “
First-Order Reliability Method for Structural Reliability Analysis in the Presence of Random and Interval Variables
,”
ASME J. Risk Uncertainty Part B
,
1
(
4
), p.
041006
.10.1115/1.4030911
25.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
A Random Field Approach to Reliability Analysis With Random and Interval Variables
,”
ASME J. Risk Uncertainty Part B
,
1
(
4
), p.
041005
.10.1115/1.4030437
26.
Gao
,
W.
,
Di Wu
,
D.
,
Gao
,
K.
,
Chen
,
X.
, and
Tin-Loi
,
F.
,
2018
, “
Structural Reliability Analysis With Imprecise Random and Interval Fields
,”
Appl. Math. Model.
,
55
, pp.
49
67
.10.1016/j.apm.2017.10.029
27.
Der Kiureghian
,
A.
,
2008
, “
Analysis of Structural Reliability Under Parameter Uncertainties
,”
Probab. Eng. Mech.
,
23
(
4
), pp.
351
358
.10.1016/j.probengmech.2007.10.011
28.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.10.1016/j.strusafe.2008.06.020
29.
Goller
,
B.
,
Pradlwarter
,
H. J.
, and
Schüeller
,
G. I.
,
2013
, “
Reliability Assessment in Structural Dynamics
,”
J. Sound Vib.
,
332
(
10
), pp.
2488
2499
.10.1016/j.jsv.2012.11.021
30.
Gupta
,
S.
, and
Manohar
,
C. S.
,
2006
, “
Reliability Analysis of Randomly Vibrating Structures With Parameter Uncertainties
,”
J. Sound Vib.
,
297
(
3–5
), pp.
1000
1024
.10.1016/j.jsv.2006.05.010
31.
Chaudhuri
,
A.
, and
Chakraborty
,
S.
,
2006
, “
Reliability of Linear Structures With Parameter Uncertainty Under Non-Stationary Earthquake
,”
Struct. Saf.
,
28
(
3
), pp.
231
246
.10.1016/j.strusafe.2005.07.001
32.
Ma
,
J.
,
Gao
,
W.
,
Wriggers
,
P.
,
Wu
,
T.
, and
Sahraee
,
S.
,
2010
, “
The Analyses of Dynamic Response and Reliability of Fuzzy-Random Truss Under Stationary Stochastic Excitation
,”
Comput. Mech.
,
45
(
5
), pp.
443
455
.10.1007/s00466-009-0463-7
33.
Do
,
D. M.
,
Gao
,
W.
,
Song
,
C.
, and
Tangaramvong
,
S.
,
2014
, “
Dynamic Analysis and Reliability Assessment of Structures With Uncertain-but-Bounded Parameters Under Stochastic Process Excitations
,”
Reliab. Eng. Syst. Saf.
,
132
, pp.
46
59
.10.1016/j.ress.2014.07.002
34.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2015
, “
Explicit Reliability Sensitivities of Linear Structures With Interval Uncertainties Under Stationary Stochastic Excitations
,”
Struct. Saf.
,
52
(
Part B
), pp.
219
232
.10.1016/j.strusafe.2014.03.001
35.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2016
, “
Reliability Analysis of Structures With Interval Uncertainties Under Stationary Stochastic Excitations
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
47
69
.10.1016/j.cma.2015.10.023
36.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2016
, “
Interval Fractile Levels for Stationary Stochastic Response of Linear Structures With Uncertainties
,”
ASME J. Risk Uncertainty Part B
,
2
(
1
), p.
011004
.10.1115/1.4030455
37.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
1997
,
Stochastic Analysis of Structural and Mechanical Vibrations
,
Prentice Hall
,
Upper Saddle River, NJ
.
38.
Li
,
J.
,
Chen
,
J. B.
,
2009
,
Stochastic Dynamics of Structures
,
Wiley
,
Singapore
.
39.
Muscolino
,
G.
, and
Sofi
,
A.
,
2012
, “
Stochastic Analysis of Structures With Uncertain-but-Bounded Parameters Via Improved Interval Analysis
,”
Probab. Eng. Mech.
,
28
, pp.
152
163
.10.1016/j.probengmech.2011.08.011
40.
Muscolino
,
G.
, and
Sofi
,
A.
,
2013
, “
Bounds for the Stationary Stochastic Response of Truss Structures With Uncertain-but-Bounded Parameters
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
163
181
.10.1016/j.ymssp.2012.06.016
41.
Moore
,
R. E.
,
1966
,
Interval Analysis
,
Prentice Hall
,
Englewood Cliffs
.
42.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia, PA
.
43.
Moens
,
D.
, and
Vandepitte
,
D.
,
2005
, “
A Survey of Non-Probabilistic Uncertainty Treatment in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1527
1555
.10.1016/j.cma.2004.03.019
44.
Fuchs
,
M. B.
,
1997
, “
Unimodal Formulation of the Analysis and Design Problems for Framed Structures
,”
Comput. Struct.
,
63
(
4
), pp.
739
747
.10.1016/S0045-7949(96)00064-8
45.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.10.1002/j.1538-7305.1944.tb00874.x
46.
Vanmarcke
,
E. H.
,
1972
, “
Properties of Spectral Moments With Applications to Random Vibration
,”
J. Eng. Mech. ASCE
,
98
, pp.
425
446
.
47.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2014
, “
Explicit Frequency Response Functions of Discretized Structures With Uncertain Parameters
,”
Comput. Struct.
,
133
, pp.
64
78
.10.1016/j.compstruc.2013.11.007
48.
Sofi
,
A.
, and
Romeo
,
E.
,
2016
, “
A Novel Interval Finite Element Method Based on the Improved Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
671
697
.10.1016/j.cma.2016.09.009
49.
Michaelov
,
G.
,
Sarkani
,
S.
, and
Lutes
,
L. D.
,
1996
, “
Fractile Levels for Non-Stationary Extreme Response of Linear Structures
,”
Struct. Saf.
,
18
(
1
), pp.
11
31
.10.1016/0167-4730(96)00002-1
50.
Crandall
,
S. H.
,
Chandiramani
,
K. L.
, and
Cook
,
R. G.
,
1966
, “
Some First-Passage Problems in Random Vibration
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
532
538
.10.1115/1.3625118
51.
Simiu
,
E.
, and
Scanlan
,
R.
,
1996
,
Wind Effects on Structures
,
Wiley
,
New York
.
52.
Davenport
,
A. G.
,
1961
, “
The Spectrum of Horizontal Gustiness Near the round in high winds
,”
Q. J. Roy. Meteorol. Soc.
,
87
(
372
), pp.
194
211
.10.1002/qj.49708737208
You do not currently have access to this content.