Abstract

This paper reviews the state of the art in applying uncertainty quantification (UQ) methods to additive manufacturing (AM). Physics-based as well as data-driven models are increasingly being developed and refined in order to support process optimization and control objectives in AM, in particular to maximize the quality and minimize the variability of the AM product. However, before using these models for decision-making, a fundamental question that needs to be answered is to what degree the models can be trusted, and consider the various uncertainty sources that affect their prediction. UQ in AM is not trivial because of the complex multiphysics, multiscale phenomena in the AM process. This article reviews the literature on UQ methodologies focusing on model uncertainty, discusses the corresponding activities of calibration, verification, and validation, and examines their applications reported in the AM literature. The extension of current UQ methodologies to additive manufacturing needs to address multiphysics, multiscale interactions, increasing presence of data-driven models, high cost of manufacturing, and complexity of measurements. The activities that need to be undertaken in order to implement verification, calibration, and validation for AM are discussed. Literature on using the results of UQ activities toward AM process optimization and control (thus supporting maximization of quality and minimization of variability) is also reviewed. Future research needs both in terms of UQ and decision-making in AM are outlined.

References

1.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
2.
Department of Defense,
2009
,
Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A)
, DoD Instruction 5000.61:
Defense Modeling and Simulation Office, Office of the Director of Defense Research and Engineering
, Washington, DC .
3.
National Aeronautics and Space Administration
,
2008
, “
Standard for Models and Simulation-NASA Technical Standard
,” National Aeronautics and Space Administration, Washington, DC, Standard No. NASA-STD-7009.
4.
Mullins
,
J.
,
Ling
,
Y.
,
Mahadevan
,
S.
,
Sun
,
L.
, and
Strachan
,
A.
,
2016
, “
Separation of Aleatory and Epistemic Uncertainty in Probabilistic Model Validation
,”
Reliab. Eng. Syst. Saf.
,
147
, pp.
49
59
.10.1016/j.ress.2015.10.003
5.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2013
, “
Separating the Contributions of Variability and Parameter Uncertainty in Probability Distributions
,”
Reliab. Eng. Syst. Saf.
,
112
, pp.
187
199
.10.1016/j.ress.2012.11.024
6.
Li
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Relative Contributions of Aleatory and Epistemic Uncertainty Sources in Time Series Prediction
,”
Int. J. Fatigue
,
82
, pp.
474
486
.10.1016/j.ijfatigue.2015.09.002
7.
American Society of Mechanical Engineers
,
2006
,
Guide for Verification and Validation in Computational Solid Mechanics
,
ASME
, New York, Standard No. V&V10-2006.
8.
American Society of Mechanical Engineers
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
ASME
, New York, Standard No. V&V20-2009.
9.
American Society of Mechanical Engineers
,
2014
,
Dimensional Measurement Planning
,
ASME
, New York, Standard No. B89.7.2.
10.
American Society of Mechanical Engineers,
2018
,
Test Uncertainty
,
ASME
, New York, PTC 19.1—2018(R2018).
11.
American Institute of Aeronautics and Astronautics
,
1998
, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,”
AIAA
Paper No. G-077-1998.10.2514/6.G-077-1998
12.
ASTM International
,
2015
,
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,
ASTM International
,
West Conshohocken, PA
, Standard No. ISO/ASTM52900-15.
13.
ASTM International
,
2013
,
Standard Terminology for Additive Manufacturing-Coordinate Systems and Test Methodologies
,
ASTM International
,
West Conshohocken, PA
, Standard No. ISO/ASTM52921-13(2019).
14.
International Organization for Standardization
,
2008
,
Uncertainty of Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995)
,
ISO
, Geneva, Switzerland, Standard No. ISO/IEC GUIDE 98-3:2008.
15.
International Organization for Standardization
,
2007
,
International Vocabulary of Metrology - Basic and General Concepts and Associated Terms (VIM)
,
ISO
, Geneva, Switzerland, Standard No. ISO/IEC GUIDE 99:2007.
16.
International Organization for Standardization
,
2015
,
Quality Management Systems - Fundamentals and Vocabulary
,
ISO
, Geneva, Switzerland, Standard No. ISO 9000:2015.
17.
International Organization for Standardization
,
2015
,
Systems and Software Engineering - System Life Cycle Processes
,
ISO
, Geneva, Switzerland, Standard No. ISO/IEC/IEEE 15288:2015.
18.
Institute of Electrical and Electronics Engineers
,
2016
, “
IEEE Standard for System, Software, and Hardware Verification and Validation
,”
IEEE
, New York, Standard No. 1012–2016.
19.
The Minerals, Metals & Materials Society (TMS)
,
2020
,
Accelerating the Broad Implementation of Verification & Validation in Computational Models of the Mechanics of Materials and Structures
,
The Minerals, Metals & Materials Society (TMS)
,
Pittsburgh, PA
, p.
15237
.
20.
Praniewicz
,
M.
,
Ameta
,
G.
,
Fox
,
J.
, and
Saldana
,
C.
,
2020
, “
Data Registration for Multi-Method Qualification of Additive Manufactured Components
,”
Addit. Manuf.
,
35
, p.
101292
.10.1016/j.addma.2020.101292
21.
Niaki
,
M. K.
,
Torabi
,
S. A.
, and
Nonino
,
F.
,
2019
, “
Why Manufacturers Adopt Additive Manufacturing Technologies: The Role of Sustainability
,”
J. Cleaner Prod.
,
222
, pp.
381
392
.10.1016/j.jclepro.2019.03.019
22.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2021
,
Additive Manufacturing Technologies
, Vol.
17
,
Springer
, Berlin.
23.
Engineering Product Design,
Additive Manufacturing: What is Additive Manufacturing?
,” accessed Dec. 15, 2020, https://engineeringproductdesign.com/knowledge-base/additive-manufacturing-processes/
24.
GE Additive
, “
Additive Manufacturing: What is Additive Manufacturing?
,” accessed Dec. 15, 2020, https://www.ge.com/additive/additive-manufacturing
25.
All3DP
, “
The 7 Types of Additive Manufacturing
,” accessed Dec. 15, 2020, https://all3dp.com/2/main-types-additive-manufacturing/
26.
Appuhamillage
,
G. A.
,
Chartrain
,
N.
,
Meenakshisundaram
,
V.
,
Feller
,
K. D.
,
Williams
,
C. B.
, and
Long
,
T. E.
,
2019
, “
110th Anniversary: Vat Photopolymerization-Based Additive Manufacturing: Current Trends and Future Directions in Materials Design
,”
Ind. Eng. Chem. Res.
,
58
(
33
), pp.
15109
15118
.10.1021/acs.iecr.9b02679
27.
Turner
,
B. N.
,
Strong
,
R.
, and
Gold
,
S. A.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling
,”
Rapid Prototyping J.
,
20
(
3
), pp.
192
204
.10.1108/RPJ-01- 2013-0012
28.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.10.1063/1.4937809
29.
ASTM International
,
2016
,
Standard Guide for Directed Energy Deposition of Metals
,
ASTM International
,
West Conshohocken, PA
, Standatd No. ASTM F3187.
30.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
.10.1016/j.addma.2019.05.031
31.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
, “
Material Jetting
,”
Additive Manufacturing Technologies
,
Springer
, Berlin, pp.
175
203
.
32.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
, “
Sheet Lamination Processes
,”
Additive Manufacturing Technologies
,
Springer
, Berlin, pp.
223
252
.
33.
Tofail
,
S. A.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O'Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.10.1016/j.mattod.2017.07.001
34.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
.10.1007/s00170-015-7576-2
35.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2019
, “
Uncertainty Quantification of Grain Morphology in Laser Direct Metal Deposition
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
4
), p.
044003
.10.1088/1361-651X/ab1676
36.
Emady
,
H. N.
,
Kayrak-Talay
,
D.
, and
Litster
,
J. D.
,
2013
, “
Modeling the Granule Formation Mechanism From Single Drop Impact on a Powder Bed
,”
J. Colloid Interface Sci.
,
393
, pp.
369
376
.10.1016/j.jcis.2012.10.038
37.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.10.1016/j.actamat.2016.02.014
38.
Bidare
,
P.
,
Bitharas
,
I.
,
Ward
,
R.
,
Attallah
,
M.
, and
Moore
,
A. J.
,
2018
, “
Fluid and Particle Dynamics in Laser Powder Bed Fusion
,”
Acta Mater.
,
142
, pp.
107
120
.10.1016/j.actamat.2017.09.051
39.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-Physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
.10.1016/j.actamat.2017.05.061
40.
Gürtler
,
F.-J.
,
Karg
,
M.
,
Leitz
,
K.-H.
, and
Schmidt
,
M.
,
2013
, “
Simulation of Laser Beam Melting of Steel Powders Using the Three-Dimensional Volume of Fluid Method
,”
Phys. Procedia
,
41
, pp.
881
886
.10.1016/j.phpro.2013.03.162
41.
Attar
,
E.
, and
Körner
,
C.
,
2011
, “
Lattice Boltzmann Model for Thermal Free Surface Flows With Liquid–Solid Phase Transition
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
156
163
.10.1016/j.ijheatfluidflow.2010.09.006
42.
Yuan
,
P.
, and
Gu
,
D.
,
2015
, “
Molten Pool Behaviour and Its Physical Mechanism During Selective Laser Melting of TiC/AlSi10 Mg Nanocomposites: Simulation and Experiments
,”
J. Phys. D Appl. Phys.
,
48
(
3
), p.
035303
.10.1088/0022-3727/48/3/035303
43.
Kouraytem
,
N.
,
Li
,
X.
,
Cunningham
,
R.
,
Zhao
,
C.
,
Parab
,
N.
,
Sun
,
T.
,
Rollett
,
A. D.
,
Spear
,
A. D.
, and
Tan
,
W.
,
2019
, “
Effect of Laser-Matter Interaction on Molten Pool Flow and Keyhole Dynamics
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064054
.10.1103/PhysRevApplied.11.064054
44.
Yang
,
Q.
,
Zhang
,
P.
,
Cheng
,
L.
,
Min
,
Z.
,
Chyu
,
M.
, and
To
,
A. C.
,
2016
, “
Finite Element Modeling and Validation of Thermomechanical Behavior of Ti-6Al-4V in Directed Energy Deposition Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
169
177
.10.1016/j.addma.2016.06.012
45.
Cao
,
J.
,
Gharghouri
,
M. A.
, and
Nash
,
P.
,
2016
, “
Finite-Element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates
,”
J. Mater. Process. Technol.
,
237
, pp.
409
419
.10.1016/j.jmatprotec.2016.06.032
46.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p. 061007.10.1115/1.4028669
47.
Heigel
,
J.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V
,”
Addit. Manuf.
,
5
, pp.
9
19
.10.1016/j.addma.2014.10.003
48.
Denlinger
,
E. R.
,
Heigel
,
J. C.
, and
Michaleris
,
P.
,
2015
, “
Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti-6Al-4V
,”
Proc. Inst. Mech. Eng., Part B J. Eng. Manuf.
,
229
(
10
), pp.
1803
1813
.10.1177/0954405414539494
49.
Chen
,
W.
,
Voisin
,
T.
,
Zhang
,
Y.
,
Forien
,
J.-B.
,
Spadaccini
,
C. M.
,
McDowell
,
D. L.
,
Zhu
,
T.
, and
Wang
,
Y. M.
,
2019
, “
Microscale Residual Stresses in Additively Manufactured Stainless Steel
,”
Nat. Commun.
,
10
(
1
), pp.
1
12
.10.1038/s41467-019-12265-8
50.
Lu
,
L.-X.
,
Sridhar
,
N.
, and
Zhang
,
Y.-W.
,
2018
, “
Phase Field Simulation of Powder Bed-Based Additive Manufacturing
,”
Acta Mater.
,
144
, pp.
801
809
.10.1016/j.actamat.2017.11.033
51.
Gong
,
X.
, and
Chou
,
K.
,
2015
, “
Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing
,”
JOM
,
67
(
5
), pp.
1176
1182
.10.1007/s11837-015-1352-5
52.
Zhang
,
X.
, and
Liao
,
Y.
,
2018
, “
A Phase-Field Model for Solid-State Selective Laser Sintering of Metallic Materials
,”
Powder Technol.
,
339
, pp.
677
685
.10.1016/j.powtec.2018.08.025
53.
Zhang
,
J.
,
Liou
,
F.
,
Seufzer
,
W.
, and
Taminger
,
K.
,
2016
, “
A Coupled Finite Element Cellular Automaton Model to Predict Thermal History and Grain Morphology of Ti-6Al-4V During Direct Metal Deposition (DMD)
,”
Addit. Manuf.
,
11
, pp.
32
39
.10.1016/j.addma.2016.04.004
54.
Herriott
,
C.
,
Li
,
X.
,
Kouraytem
,
N.
,
Tari
,
V.
,
Tan
,
W.
,
Anglin
,
B.
,
Rollett
,
A. D.
, and
Spear
,
A. D.
,
2019
, “
A Multi-Scale, Multi-Physics Modeling Framework to Predict Spatial Variation of Properties in Additive-Manufactured Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
2
), p.
025009
.10.1088/1361-651X/aaf753
55.
Ye
,
W.
,
Akram
,
J.
, and
Mushongera
,
L. T.
,
2021
, “
Fatigue Behavior of Additively Manufactured IN718 With Columnar Grains
,”
Adv. Eng. Mater.
,
23
(
3
), p.
2001031
.10.1002/adem.202001031
56.
Wang
,
L.
,
Huang
,
Y.
,
Yang
,
D.
,
Li
,
H.
,
Peng
,
Y.
, and
Wang
,
K.
,
2020
, “
Multi-Scale Simulation of Grain Growth During Laser Beam Welding of Nickel-Based Superalloy
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
15034
15044
.10.1016/j.jmrt.2020.10.091
57.
Guan
,
X.
, and
Zhao
,
Y. F.
,
2020
, “
Modeling of the Laser Powder–Based Directed Energy Deposition Process for Additive Manufacturing: A Review
,”
Int. J. Adv. Manuf. Technol.
, 107(5), pp.
1959
1982
.10.1007/s00170-020-05027-0
58.
Kumar
,
M. B.
, and
Sathiya
,
P.
,
2021
, “
Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges
,”
Thin-Walled Struct.
,
159
, p.
107228
.10.1016/j.tws.2020.107228
59.
Landers
,
R. G.
,
Barton
,
K.
,
Devasia
,
S.
,
Kurfess
,
T.
,
Pagilla
,
P.
, and
Tomizuka
,
M.
,
2020
, “
A Review of Manufacturing Process Control
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p. 110814.10.1115/1.4048111
60.
Beaman
,
J.
,
Bourell
,
D. L.
,
Seepersad
,
C.
, and
Kovar
,
D.
,
2020
, “
Additive Manufacturing Review: Early Past to Current Practice
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p. 110812.10.1115/1.4048193
61.
Li
,
J.
,
Zhou
,
X.
,
Brochu
,
M.
,
Provatas
,
N.
, and
Zhao
,
Y. F.
,
2020
, “
Solidification Microstructure Simulation of Ti-6Al-4V in Metal Additive Manufacturing: A Review
,”
Addit. Manuf.
,
31
, p.
100989
.10.1016/j.addma.2019.100989
62.
Zhang
,
Z.
,
Liu
,
Z.
, and
Wu
,
D.
,
2021
, “
Prediction of Melt Pool Temperature in Directed Energy Deposition Using Machine Learning
,”
Addit. Manuf.
,
37
, p.
101692
.10.1016/j.addma.2020.101692
63.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.10.1016/j.jmsy.2018.04.001
64.
Sharma
,
A.
,
Chen
,
J.
,
Diewald
,
E.
,
Imanian
,
A.
,
Beuth
,
J.
, and
Liu
,
Y.
,
2021
, “
Data-Driven Sensitivity Analysis for Static Mechanical Properties of Additively Manufactured Ti-6AL-4V
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B Mech. Eng.
,
8
(
1
), p.
011108
.10.1115/1.4051799
65.
Nalajam
,
P. K.
, and
Varadarajan
,
R.
,
2021
, “
A Hybrid Deep Learning Model for Layer-Wise Melt Pool Temperature Forecasting in Wire-Arc Additive Manufacturing Process
,”
IEEE Access
,
9
, pp.
100652
100664
.10.1109/ACCESS.2021.3097177
66.
Srinivasan
,
S.
,
Swick
,
B.
, and
Groeber
,
M. A.
,
2020
, “
Laser Powder Bed Fusion Parameter Selection Via Machine-Learning-Augmented Process Modeling
,”
JOM
,
72
(
12
), pp.
4393
4403
.10.1007/s11837-020-04383-2
67.
Zhang
,
X.
,
Saniie
,
J.
,
Cleary
,
W.
, and
Heifetz
,
A.
,
2020
, “
Quality Control of Additively Manufactured Metallic Structures With Machine Learning of Thermography Images
,”
JOM
,
72
(
12
), pp.
4682
4694
.10.1007/s11837-020-04408-w
68.
Jin
,
Z.
,
Zhang
,
Z.
,
Demir
,
K.
, and
Gu
,
G. X.
,
2020
, “
Machine Learning for Advanced Additive Manufacturing
,”
Matter
,
3
(
5
), pp.
1541
1556
.10.1016/j.matt.2020.08.023
69.
Tian
,
C.
,
Li
,
T.
,
Bustillos
,
J.
,
Bhattacharya
,
S.
,
Turnham
,
T.
,
Yeo
,
J.
, and
Moridi
,
A.
,
2021
, “
Data-Driven Approaches Toward Smarter Additive Manufacturing
,”
Adv. Intell. Syst.
, 3(12), p.
2100014
.10.1002/aisy.202100014
70.
Meng
,
L.
,
McWilliams
,
B.
,
Jarosinski
,
W.
,
Park
,
H.-Y.
,
Jung
,
Y.-G.
,
Lee
,
J.
, and
Zhang
,
J.
,
2020
, “
Machine Learning in Additive Manufacturing: A Review
,”
JOM
,
72
(
6
), pp.
2363
2377
.10.1007/s11837-020-04155-y
71.
Goh
,
G. D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2021
, “
A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges
,”
Artif. Intell. Rev.
,
54
(
1
), pp.
63
94
.10.1007/s10462-020-09876-9
72.
Ren
,
K.
,
Chew
,
Y.
,
Zhang
,
Y.
,
Fuh
,
J.
, and
Bi
,
G.
,
2020
, “
Thermal Field Prediction for Laser Scanning Paths in Laser Aided Additive Manufacturing by Physics-Based Machine Learning
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112734
.10.1016/j.cma.2019.112734
73.
Kapusuzoglu
,
B.
, and
Mahadevan
,
S.
,
2020
, “
Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication
,”
JOM
,
72
(
12
), pp.
4695
4705
.10.1007/s11837-020-04438-4
74.
Kapusuzoglu
,
B.
, and
Mahadevan
,
S.
,
2021
, “
Information Fusion and Machine Learning for Sensitivity Analysis Using Physics Knowledge and Experimental Data
,”
Reliab. Eng. Syst. Saf.
,
214
, p.
107712
.10.1016/j.ress.2021.107712
75.
Ahsan
,
F.
,
Razmi
,
J.
, and
Ladani
,
L.
,
2020
, “
Experimental Measurement of Thermal Diffusivity, Conductivity and Specific Heat Capacity of Metallic Powders at Room and High Temperatures
,”
Powder Technol.
,
374
, pp.
648
657
.10.1016/j.powtec.2020.07.043
76.
Bruna-Rosso
,
C.
,
Demir
,
A. G.
, and
Previtali
,
B.
,
2018
, “
Selective Laser Melting Finite Element Modeling: Validation With High-Speed Imaging and Lack of Fusion Defects Prediction
,”
Mater. Des.
,
156
, pp.
143
153
.10.1016/j.matdes.2018.06.037
77.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
78.
Gusarov
,
A.
,
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2009
, “
Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), p. 072101.10.1115/1.3109245
79.
Mirkoohi
,
E.
,
Seivers
,
D. E.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2019
, “
Heat Source Modeling in Selective Laser Melting
,”
Materials
,
12
(
13
), p.
2052
.10.3390/ma12132052
80.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p. 040801.10.1115/1.4042789
81.
Attari
,
V.
,
Honarmandi
,
P.
,
Duong
,
T.
,
Sauceda
,
D. J.
,
Allaire
,
D.
, and
Arroyave
,
R.
,
2020
, “
Uncertainty Propagation in a Multiscale CALPHAD-Reinforced Elastochemical Phase-Field Model
,”
Acta Mater.
,
183
, pp.
452
470
.10.1016/j.actamat.2019.11.031
82.
DeCarlo
,
E. C.
,
Smarslok
,
B. P.
, and
Mahadevan
,
S.
,
2016
, “
Segmented Bayesian Calibration of Multidisciplinary Models
,”
AIAA J.
,
54
(
12
), pp.
3727
3741
.10.2514/1.J054960
83.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2015
, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
194
209
.10.1016/j.ress.2015.01.023
84.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.10.1016/j.engfracmech.2011.02.017
85.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.10.1016/j.jcp.2004.10.036
86.
Vohra
,
M.
,
Nath
,
P.
,
Mahadevan
,
S.
, and
Lee
,
Y.-T. T.
,
2020
, “
Fast Surrogate Modeling Using Dimensionality Reduction in Model Inputs and Field Output: Application to Additive Manufacturing
,”
Reliab. Eng. Syst. Saf.
,
201
, p.
106986
.10.1016/j.ress.2020.106986
87.
Richardson
,
L. F.
,
1911
, “
IX. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London. Ser. A
,
210
(
459–470
), pp.
307
357
.10.1098/rsta.1911.0009
88.
Rangavajhala
,
S.
,
Sura
,
V. S.
,
Hombal
,
V. K.
, and
Mahadevan
,
S.
,
2011
, “
Discretization Error Estimation in Multidisciplinary Simulations
,”
AIAA J.
,
49
(
12
), pp.
2673
2683
.10.2514/1.J051085
89.
Baiges
,
J.
,
Chiumenti
,
M.
,
Moreira
,
C. A.
,
Cervera
,
M.
, and
Codina
,
R.
,
2021
, “
An Adaptive Finite Element Strategy for the Numerical Simulation of Additive Manufacturing Processes
,”
Addit. Manuf.
,
37
, p.
101650
.10.1016/j.addma.2020.101650
90.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Efficient LPBF Process Simulation Using Finite Element Modeling With Adaptive Remeshing for Distortions and Residual Stresses Prediction
,”
Manuf. Lett.
,
24
, pp.
140
144
.10.1016/j.mfglet.2020.05.002
91.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Part-Scale Finite Element Modeling of the Selective Laser Melting Process With Layer-Wise Adaptive Remeshing for Thermal History and Porosity Prediction
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p. 121006.10.1115/1.4047733
92.
Schwalbach
,
E. J.
,
Donegan
,
S. P.
,
Chapman
,
M. G.
,
Chaput
,
K. J.
, and
Groeber
,
M. A.
,
2019
, “
A Discrete Source Model of Powder Bed Fusion Additive Manufacturing Thermal History
,”
Addit. Manuf.
,
25
, pp.
485
498
.10.1016/j.addma.2018.12.004
93.
Mindt
,
H.-W.
,
Megahed
,
M.
,
Lavery
,
N.
,
Giordimaina
,
A.
, and
Brown
,
S.
,
2016
, “
Verification of Numerically Calculated Cooling Rates of Powder Bed Additive Manufacturing
,”
TMS 2016 145th Annual Meeting & Exhibition
,
Springer
, Nashville, TN, February 14–18, 2016, pp.
205
212
.
94.
Harley
,
A.
,
Nikam
,
S. H.
,
Wu
,
H.
,
Quinn
,
J.
, and
McFadden
,
S.
,
2020
, “
Code-to-Code Verification for Thermal Models of Melting and Solidification in a Metal Alloy: Comparisons Between a Finite Volume Method and a Finite Element Method
,”
Mech. Sci.
,
11
(
1
), pp.
125
135
.10.5194/ms-11-125-2020
95.
Mooney
,
R. P.
,
Sturz
,
L.
,
Zimmermann
,
G.
, and
McFadden
,
S.
,
2018
, “
Thermal Characterisation With Modelling for a Microgravity Experiment Into Polycrystalline Equiaxed Dendritic Solidification With in-Situ Observation
,”
Int. J. Therm. Sci.
,
125
, pp.
283
292
.10.1016/j.ijthermalsci.2017.11.032
96.
Mooney
,
R. P.
, and
McFadden
,
S.
,
2014
, “
Order Verification of a Bridgman Furnace Front Tracking Model in Steady State
,”
Simul. Modell. Pract. Theory
,
48
, pp.
24
34
.10.1016/j.simpat.2014.07.005
97.
Pineau
,
A.
,
Guillemot
,
G.
,
Tourret
,
D.
,
Karma
,
A.
, and
Gandin
,
C.-A.
,
2018
, “
Growth Competition Between Columnar Dendritic Grains–Cellular Automaton Versus Phase Field Modeling
,”
Acta Mater.
,
155
, pp.
286
301
.10.1016/j.actamat.2018.05.032
98.
Battaglioli
,
S.
,
Robinson
,
A.
, and
McFadden
,
S.
,
2017
, “
Axisymmetric Front Tracking Model for the Investigation of Grain Structure Evolution During Directional Solidification
,”
Int. J. Heat Mass Transfer
,
115
, pp.
592
605
.10.1016/j.ijheatmasstransfer.2017.07.095
99.
Seredyński
,
M.
,
Battaglioli
,
S.
,
Mooney
,
R. P.
,
Robinson
,
A. J.
,
Banaszek
,
J.
, and
McFadden
,
S.
,
2017
, “
Code-to-Code Verification of an Axisymmetric Model of the Bridgman Solidification Process for Alloys
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
5
), pp.
1142
1157
.10.1108/HFF-03-2016-0123
100.
Krol
,
T.
,
Seidel
,
C.
,
Schilp
,
J.
,
Hofmann
,
M.
,
Gan
,
W.
, and
Zaeh
,
M.
,
2013
, “
Verification of Structural Simulation Results of metal-Based Additive Manufacturing by Means of Neutron Diffraction
,”
Phys. Procedia
,
41
, pp.
849
857
.10.1016/j.phpro.2013.03.158
101.
Madsen
,
H.
,
2000
, “
Automatic Calibration of a Conceptual Rainfall–Runoff Model Using Multiple Objectives
,”
J. Hydrol.
,
235
(
3–4
), pp.
276
288
.10.1016/S0022-1694(00)00279-1
102.
Konigsberg
,
L. W.
,
Hens
,
S. M.
,
Jantz
,
L. M.
, and
Jungers
,
W. L.
,
1998
, “
Stature Estimation and Calibration: Bayesian and Maximum Likelihood Perspectives in Physical Anthropology
,”
Am. J. Phys. Anthropol.
,
107
(
S27
), pp.
65
92
.10.1002/(SICI)1096-8644(1998)107:27+<65::AID-AJPA4>3.0.CO;2-6
103.
DeJong
,
D. N.
,
Ingram
,
B. F.
, and
Whiteman
,
C. H.
,
1996
, “
A Bayesian Approach to Calibration
,”
J. Bus. Econ. Stat.
,
14
(
1
), pp.
1
9
.10.2307/1392095
104.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
105.
Kapusuzoglu
,
B.
,
Sato
,
M.
,
Mahadevan
,
S.
, and
Witherell
,
P.
,
2021
, “
Process Optimization Under Uncertainty for Improving the Bond Quality of Polymer Filaments in Fused Filament Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021007
.10.1115/1.4048073
106.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Integr. Mater. Manuf. Innovation
,
7
(
3
), pp.
116
135
.10.1007/s40192-018-0113-z
107.
Nath
,
P.
,
Olson
,
J. D.
,
Mahadevan
,
S.
, and
Lee
,
Y.-T. T.
,
2020
, “
Optimization of Fused Filament Fabrication Process Parameters Under Uncertainty to Maximize Part Geometry Accuracy
,”
Addit. Manuf.
,
35
, p.
101331
.10.1016/j.addma.2020.101331
108.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p. 100908.10.1115/1.4007390
109.
Arendt
,
P. D.
,
Apley
,
D. W.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration Using Multiple Responses
,”
ASME J. Mech. Des.
,
134
(
10
), p. 100909.10.1115/1.4007573
110.
Wang
,
Z.
,
Liu
,
P.
,
Ji
,
Y.
,
Mahadevan
,
S.
,
Horstemeyer
,
M. F.
,
Hu
,
Z.
,
Chen
,
L.
, and
Chen
,
L.-Q.
,
2019
, “
Uncertainty Quantification in Metallic Additive Manufacturing Through Physics-Informed Data-Driven Modeling
,”
JOM
,
71
(
8
), pp.
2625
2634
.10.1007/s11837-019-03555-z
111.
Nath
,
P.
, and
Mahadevan
,
S.
,
2021
, “
Probabilistic Predictive Control of Porosity in Laser Powder Bed Fusion
,”
J. Intell. Manuf.
, pp. 1–19.10.1007/s10845-021-01836-6
112.
White
,
A.
,
Mahadevan
,
S.
,
Grey
,
Z.
,
Schmucker
,
J.
, and
Karl
,
A.
,
2021
, “
Efficient Calibration of a Turbine Disc Heat Transfer Model Under Uncertainty
,”
J. Thermophys. Heat Transfer
,
35
(
2
), pp.
234
244
.10.2514/1.T6047
113.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Sensor Placement for Calibration of Spatially Varying Model Parameters
,”
J. Comput. Phys.
,
343
, pp.
150
169
.10.1016/j.jcp.2017.04.033
114.
Sisson
,
W.
,
Mahadevan
,
S.
, and
Smarslok
,
B. P.
,
2021
, “
Optimization of Information Gain in Multifidelity High-Speed Pressure Predictions
,”
AIAA J.
, pp.
1
10
.10.2514/1.J059507
115.
Wan
,
J.
, and
Zabaras
,
N.
,
2011
, “
A Bayesian Approach to Multiscale Inverse Problems Using the Sequential Monte Carlo Method
,”
Inverse Probl.
,
27
(
10
), p.
105004
.10.1088/0266-5611/27/10/105004
116.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
117.
Absi
,
G. N.
, and
Mahadevan
,
S.
,
2016
, “
Multi-Fidelity Approach to Dynamics Model Calibration
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
189
206
.10.1016/j.ymssp.2015.07.019
118.
Ling
,
Y.
,
Mullins
,
J.
, and
Mahadevan
,
S.
,
2014
, “
Selection of Model Discrepancy Priors in Bayesian Calibration
,”
J. Comput. Phys.
,
276
, pp.
665
680
.10.1016/j.jcp.2014.08.005
119.
Ling
,
Y.
, and
Mahadevan
,
S.
,
2013
, “
Quantitative Model Validation Techniques: New Insights
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
217
231
.10.1016/j.ress.2012.11.011
120.
Kapusuzoglu
,
B.
,
Nath
,
P.
,
Sato
,
M.
,
Mahadevan
,
S.
, and
Witherell
,
P.
, “
Multi-Objective Optimization Under Uncertainty of Process Parameters in Additive Manufacturing
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
121.
Gan
,
Z.
,
Yu
,
G.
,
He
,
X.
, and
Li
,
S.
,
2017
, “
Surface-Active Element Transport and Its Effect on Liquid Metal Flow in Laser-Assisted Additive Manufacturing
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
206
214
.10.1016/j.icheatmasstransfer.2017.06.007
122.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Modelling and Measuring the Thermal Behaviour of the Molten Pool in Closed-Loop Controlled Laser-Based Additive Manufacturing
,”
Proc. Inst. Mech. Eng., Part B J. Eng. Manuf.
,
217
(
4
), pp.
441
452
.10.1243/095440503321628125
123.
Wang
,
X.
,
Sridar
,
S.
, and
Xiong
,
W.
,
2020
, “
Thermodynamic Investigation of New High-Strength Low-Alloy Steels With Heusler Phase Strengthening for Welding and Additive Manufacturing: High-Throughput CALPHAD Calculations and Key Experiments for Database Verification
,”
J. Phase Equilib. Diffusion
,
41
(
6
), pp.
804
818
.10.1007/s11669-020-00828-y
124.
Song
,
J.
,
Chew
,
Y.
,
Bi
,
G.
,
Yao
,
X.
,
Zhang
,
B.
,
Bai
,
J.
, and
Moon
,
S. K.
,
2018
, “
Numerical and Experimental Study of Laser Aided Additive Manufacturing for Melt-Pool Profile and Grain Orientation Analysis
,”
Mater. Des.
,
137
, pp.
286
297
.10.1016/j.matdes.2017.10.033
125.
Rai
,
R.
,
Kelly
,
S.
,
Martukanitz
,
R.
, and
DebRoy
,
T.
,
2008
, “
A Convective Heat-Transfer Model for Partial and Full Penetration Keyhole Mode Laser Welding of a Structural Steel
,”
Metall. Mater. Trans. A
,
39
(
1
), pp.
98
112
.10.1007/s11661-007-9400-6
126.
Yang
,
X.
,
Barrett
,
R. A.
,
Tong
,
M.
,
Harrison
,
N. M.
, and
Leen
,
S. B.
,
2021
, “
Towards a Process-Structure Model for Ti-6Al-4V During Additive Manufacturing
,”
J. Manuf. Processes
,
61
, pp.
428
439
.10.1016/j.jmapro.2020.11.033
127.
Khomenko
,
M.
,
Makoana
,
N.
,
Mirzade
,
F. K.
, and
Pityana
,
S.
,
2021
, “
Coupled Heat Transfer, Fluid Flow and Solidification Kinetics for Laser Additive Manufacturing Applications
,”
J. Manuf. Processes
,
67
, pp.
611
618
.10.1016/j.jmapro.2021.05.019
128.
Gu
,
D.
,
Ma
,
C.
,
Xia
,
M.
,
Dai
,
D.
, and
Shi
,
Q.
,
2017
, “
A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing
,”
Engineering
,
3
(
5
), pp.
675
684
.10.1016/J.ENG.2017.05.011
129.
Li
,
Y.
,
Xu
,
H.
,
Lai
,
W.
,
Li
,
Z.
, and
Su
,
X.
,
2020
, “
A Multiscale Material Modeling Approach to Predict the Mechanical Properties of Powder Bed Fusion (PBF) Metal
,”
Struct. Integrity Addit. Manufact. Mater. Parts
, N. Shamsaei and M. Seifi, eds. (West Conshohocken, PA, ASTM International, 2020), pp.
203
213
.10.1520/STP163120190135
130.
Tang
,
H.
,
Huang
,
H.
,
Liu
,
C.
,
Liu
,
Z.
, and
Yan
,
W.
,
2021
, “
Multi-Scale Modelling of Structure-Property Relationship in Additively Manufactured Metallic Materials
,”
Int. J. Mech. Sci.
,
194
, p.
106185
.10.1016/j.ijmecsci.2020.106185
131.
VanDerHorn
,
E.
, and
Mahadevan
,
S.
,
2018
, “
Bayesian Model Updating With Summarized Statistical and Reliability Data
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
12
24
.10.1016/j.ress.2017.11.023
132.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2009
, “
Bayesian Structural Equation Modeling Method for Hierarchical Model Validation
,”
Reliab. Eng. Syst. Saf.
,
94
(
4
), pp.
796
809
.10.1016/j.ress.2008.08.008
133.
Jiang
,
X.
,
Mahadevan
,
S.
, and
Urbina
,
A.
,
2010
, “
Bayesian Nonlinear Structural Equation Modeling for Hierarchical Validation of Dynamical Systems
,”
Mech. Syst. Signal Process.
,
24
(
4
), pp.
957
975
.10.1016/j.ymssp.2009.10.002
134.
Bayat
,
M.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Multiphysics Modelling of Lack-of-Fusion Voids Formation and Evolution in IN718 Made by Multi-Track/Multi-Layer L-PBF
,”
Int. J. Heat Mass Transfer
,
139
, pp.
95
114
.10.1016/j.ijheatmasstransfer.2019.05.003
135.
Ao
,
D.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Dynamics Model Validation Using Time-Domain Metrics
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
2
(
1
), p. 011004.10.1115/1.4036182
136.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2006
, “
Bayesian Cross-Entropy Methodology for Optimal Design of Validation Experiments
,”
Meas. Sci. Technol.
,
17
(
7
), pp.
1895
1908
.10.1088/0957-0233/17/7/031
137.
Li
,
C.
, and
Mahadevan
,
S.
,
2017
, “
Robust Resource Allocation for Calibration and Validation Tests
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
2
(
2
), p. 021004.10.1115/1.4037313
138.
Cattenone
,
A.
,
Morganti
,
S.
,
Alaimo
,
G.
, and
Auricchio
,
F.
,
2019
, “
Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011010
.10.1115/1.4041626
139.
Moran
,
T.
,
Warner
,
D.
, and
Phan
,
N.
,
2021
, “
Scan-by-Scan Part-Scale Thermal Modelling for Defect Prediction in Metal Additive Manufacturing
,”
Addit. Manuf.
,
37
, p.
101667
.10.1016/j.addma.2020.101667
140.
Nasab
,
M. H.
,
Romano
,
S.
,
Gastaldi
,
D.
,
Beretta
,
S.
, and
Vedani
,
M.
,
2020
, “
Combined Effect of Surface Anomalies and Volumetric Defects on Fatigue Assessment of AlSi7 Mg Fabricated Via Laser Powder Bed Fusion
,”
Addit. Manuf.
,
34
, p.
100918
.10.1016/j.addma.2019.100918
141.
Ganeriwala
,
R.
,
Hodge
,
N.
, and
Solberg
,
J.
,
2021
, “
Towards Improved Speed and Accuracy of Laser Powder Bed Fusion Simulations Via Multiscale Representations, Part I: Spatial
,”
Comput. Mater. Sci.
,
187
, p.
110112
.10.1016/j.commatsci.2020.110112
142.
Flood
,
A.
, and
Liou
,
F. W.
,
2018
, “
Review of Metal AM Simulation Validation Techniques
,”
J. Mech. Eng. Autom.
,
8
, pp.
43
52
.10.17265/2159-5275/2018.02.001
143.
Lane
,
B.
,
Moylan
,
S.
,
Whitenton
,
E. P.
, and
Ma
,
L.
,
2016
, “
Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST
,”
Rapid Prototyping J.
,
22
(
5
), pp.
778
787
.10.1108/RPJ-11-2015-0161
144.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p. 060801.10.1115/1.4028540
145.
Heigel
,
J. C.
, and
Lane
,
B. M.
,
2018
, “
Measurement of the Melt Pool Length During Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p. 051012.10.1115/1.4037571
146.
Heigel
,
J. C.
, and
Lane
,
B. M.
,
2017
, “
The Effect of Powder on Cooling Rate and Melt Pool Length Measurements Using in Situ Thermographic Techniques
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 7–9, pp.
1340
1348
147.
Grachev
,
I.
,
Bolotov
,
M.
,
Kudashov
,
E.
, and
Pechenin
,
V.
,
2020
, “
Problems and Ways to Reduce Measurement Uncertainties in Evaluating the Geometric Assembly Parameters of Gas Turbine Engine Assemblies
,”
J. Phys. Conf. Ser.
,
1515
, p.
052035
.10.1088/1742-6596/1515/5/052035
148.
NIST,
Additive Manufacturing Benchmark Test Series (AM-Bench)
,” accessed May 29, 2019, https://www.nist.gov/ambench
149.
Li
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Role of Calibration, Validation, and Relevance in Multi-Level Uncertainty Integration
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
32
43
.10.1016/j.ress.2015.11.013
150.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Ao
,
D.
,
2018
, “
Uncertainty Aggregation and Reduction in Structure–Material Performance Prediction
,”
Comput. Mech.
,
61
(
1–2
), pp.
237
257
.10.1007/s00466-017-1448-6
151.
Jiang
,
C.
,
Hu
,
Z.
,
Liu
,
Y.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
, and
Jayakumar
,
P.
,
2020
, “
A Sequential Calibration and Validation Framework for Model Uncertainty Quantification and Reduction
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113172
.10.1016/j.cma.2020.113172
152.
Wang
,
X.
, and
Xiong
,
W.
,
2020
, “
Uncertainty Quantification and Composition Optimization for Alloy Additive Manufacturing Through a CALPHAD-Based ICME Framework
,”
NPJ Comput. Mater.
,
6
(
1
), pp.
1
11
.10.1038/s41524-020-00454-9
153.
Kim
,
H.
,
Lin
,
Y.
, and
Tseng
,
T.-L. B.
,
2018
, “
A Review on Quality Control in Additive Manufacturing
,”
Rapid Prototyping J.
,
24
(
3
), pp.
645
669
.10.1108/RPJ-03-2017-0048
154.
Yang
,
H.
,
Rao
,
P.
,
Simpson
,
T.
,
Lu
,
Y.
,
Witherell
,
P.
,
Nassar
,
A. R.
,
Reutzel
,
E.
, and
Kumara
,
S.
,
2021
, “
Six-Sigma Quality Management of Additive Manufacturing
,”
Proc. IEEE
,
109
(
4
), pp.
347
376
.10.1109/JPROC.2020.3034519
155.
Khorasani
,
M.
,
Ghasemi
,
A.
,
Awan
,
U. S.
,
Hadavi
,
E.
,
Leary
,
M.
,
Brandt
,
M.
,
Littlefair
,
G.
,
O'Neil
,
W.
, and
Gibson
,
I.
,
2020
, “
A Study on Surface Morphology and Tension in Laser Powder Bed Fusion of Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
111
(
9–10
), pp.
2891
2909
.10.1007/s00170-020-06221-w
156.
Zaman
,
K.
,
McDonald
,
M.
,
Mahadevan
,
S.
, and
Green
,
L.
,
2011
, “
Robustness-Based Design Optimization Under Data Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
(
2
), pp.
183
197
.10.1007/s00158-011-0622-2
157.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.10.1115/1.1649968
158.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2017
, “
Reliability-Based Design Optimization of Multidisciplinary System Under Aleatory and Epistemic Uncertainty
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
681
699
.10.1007/s00158-016-1532-0
159.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p. 081004.10.1115/1.4043798
160.
Aljarrah
,
O.
,
Bi
,
J.
,
Heryudono
,
A.
,
Huang
,
W.
, and
Li
,
J.
,
2019
, “
A Self-Organizing Evolutionary Method to Model and Optimize Correlated Multiresponse Metrics for Additive Manufacturing Processes
,”
Smart Sustainable Manuf. Syst.
,
3
(
2
), p.
20190024
.10.1520/SSMS20190024
161.
Gandin
,
C.-A.
,
Desbiolles
,
J.-L.
,
Rappaz
,
M.
, and
Thevoz
,
P.
,
1999
, “
A Three-Dimensional Cellular Automation-Finite Element Model for the Prediction of Solidification Grain Structures
,”
Metall. Mater. Trans. A
,
30
(
12
), pp.
3153
3165
.10.1007/s11661-999-0226-2
162.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2012
, “
Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031008
.10.1115/1.4005619
163.
Liang
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Stochastic Multidisciplinary Analysis With High-Dimensional Coupling
,”
AIAA J.
,
54
(
4
), pp.
1209
1219
.10.2514/1.J054343
164.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.10.2514/1.J051895
165.
Ghoreishi
,
S. F.
, and
Imani
,
M.
,
2020
, “
Bayesian Optimization for Efficient Design of Uncertain Coupled Multidisciplinary Systems
,” American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
3412
3418
.10.23919/ACC45564.2020.9147526
166.
Nannapaneni
,
S.
,
Liang
,
C.
, and
Mahadevan
,
S.
,
2017
, “
Bayesian Network Approach to Multidisciplinary, Multi-Objective Design Optimization Under Uncertainty
,”
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Denver, CO, June 5–9, p.
3825
.10.2514/6.2017-3825
167.
Nannapaneni
,
S.
, and
Mahadevan
,
S.
,
2020
, “
Probability-Space Surrogate Modeling for Fast Multidisciplinary Optimization Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
198
, p.
106896
.10.1016/j.ress.2020.106896
168.
Megahed
,
M.
,
Mindt
,
H.-W.
,
Willems
,
J.
,
Dionne
,
P.
,
Jacquemetton
,
L.
,
Craig
,
J.
,
Ranade
,
P.
, and
Peralta
,
A.
,
2019
, “
LPBF Right the First Time - the Right Mix Between Modeling and Experiments
,”
Integr. Mater. Manuf. Innovation
,
8
(
2
), pp.
194
216
.10.1007/s40192-019-00133-8
169.
VanDerHorn
,
E.
, and
Mahadevan
,
S.
,
2021
, “
Digital Twin: Generalization, Characterization and Implementation
,”
Decis. Support Syst.
,
145
, p.
113524
.10.1016/j.dss.2021.113524
170.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.10.1109/TII.2018.2873186
171.
Liu
,
C.
,
Le Roux
,
L.
,
Körner
,
C.
,
Tabaste
,
O.
,
Lacan
,
F.
, and
Bigot
,
S.
,
2020
, “
Digital Twin-Enabled Collaborative Data Management for Metal Additive Manufacturing Systems
,”
J. Manuf. Syst.
, (In Press).10.1016/j.jmsy.2020.05.010
172.
Debroy
,
T.
,
Zhang
,
W.
,
Turner
,
J.
, and
Babu
,
S. S.
,
2017
, “
Building Digital Twins of 3D Printing Machines
,”
Scr. Mater.
,
135
, pp.
119
124
.10.1016/j.scriptamat.2016.12.005
173.
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2019
, “
A Digital Twin for Rapid Qualification of 3D Printed Metallic Components
,”
Appl. Mater. Today
,
14
, pp.
59
65
.10.1016/j.apmt.2018.11.003
174.
Wang
,
Q.
,
Li
,
J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
, and
Mitchell
,
W.
,
2018
, “
Build Height Control in Directed Energy Deposition Using a Model-Based Feed-Forward Controller
,”
ASME
Paper No. DSCC2018-9058.10.1115/DSCC2018-9058
175.
Papacharalampopoulos
,
A.
,
Stavropoulos
,
P.
, and
Stavridis
,
J.
,
2018
, “
Adaptive Control of Thermal Processes: Laser Welding and Additive Manufacturing Paradigms
,”
Procedia CIRP
,
67
, pp.
233
237
.10.1016/j.procir.2017.12.205
176.
Xia
,
C.
,
Pan
,
Z.
,
Zhang
,
S.
,
Polden
,
J.
,
Wang
,
L.
,
Li
,
H.
,
Xu
,
Y.
, and
Chen
,
S.
,
2020
, “
Model Predictive Control of Layer Width in Wire Arc Additive Manufacturing
,”
J. Manuf. Processes
,
58
, pp.
179
186
.10.1016/j.jmapro.2020.07.060
177.
Wang
,
Q.
,
Li
,
J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
, and
Mitchell
,
W. F.
,
2021
, “
Model-Based Feedforward Control of Part Height in Directed Energy Deposition
,”
Materials
,
14
(
2
), p.
337
.10.3390/ma14020337
178.
Song
,
L.
,
Bagavath-Singh
,
V.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2012
, “
Control of Melt Pool Temperature and Deposition Height During Direct Metal Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
247
256
.10.1007/s00170-011-3395-2
179.
Sammons
,
P. M.
,
Gegel
,
M. L.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2019
, “
Repetitive Process Control of Additive Manufacturing With Application to Laser Metal Deposition
,”
IEEE Trans. Control Syst. Technol.
,
27
(
2
), pp.
566
575
.10.1109/TCST.2017.2781653
180.
Li
,
F.
,
Chen
,
S.
,
Wu
,
Z.
, and
Yan
,
Z.
,
2018
, “
Adaptive Process Control of Wire and Arc Additive Manufacturing for Fabricating Complex-Shaped Components
,”
Int. J. Adv. Manuf. Technol.
,
96
(1–4), pp.
871
879
.10.1007/s00170-018-1590-0
181.
Reutzel
,
E. W.
, and
Nassar
,
A. R.
,
2015
, “
A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directed-Energy, Metal-Based Additive Manufacturing
,”
Rapid Prototyping J.
,
21
(
2
), pp.
159
167
.10.1108/RPJ-12-2014-0177
182.
Charalampous
,
P.
,
Kostavelis
,
I.
, and
Tzovaras
,
D.
,
2020
, “
Non-Destructive Quality Control Methods in Additive Manufacturing: A Survey
,”
Rapid Prototyping J.
,
26
(
4
), pp.
777
790
.10.1108/RPJ-08-2019-0224
183.
Lhachemi
,
H.
,
Malik
,
A.
, and
Shorten
,
R.
,
2019
, “
Augmented Reality, Cyber-Physical Systems, and Feedback Control for Additive Manufacturing: A Review
,”
IEEE Access
,
7
, pp.
50119
50135
.10.1109/ACCESS.2019.2907287
184.
Mohr
,
G.
,
Altenburg
,
S. J.
, and
Hilgenberg
,
K.
,
2020
, “
Effects of Inter Layer Time and Build Height on Resulting Properties of 316 L Stainless Steel Processed by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
32
, p.
101080
.10.1016/j.addma.2020.101080
You do not currently have access to this content.