Abstract

The friction force at joints of engineering structures is usually unknown and not directly identifiable. This contribution explores a procedure for obtaining the governing equation of motion and correctly identifying the unknown Coulomb friction force of a mass-spring-dashpot system. In particular, a single degree-of-freedom system is investigated both numerically and experimentally. The proposed procedure extends the state-of-the-art data-driven sparse identification of nonlinear dynamics (SINDy) algorithm by developing a methodology that explicitly imposes constraints encoding knowledge of the nonsmooth dynamics experienced during stick-slip phenomena. The proposed algorithm consists of three steps: (i) data segregation of mass-motion from mass-sticking during stick-slip response; (ii) application of SINDy on the mass-motion dataset to obtain the functional form of the governing equation; and (iii) applying sticking and slipping conditions to identify the unknown system parameters. It is shown that the proposed approach yields an improved estimate of the uncertain system parameters such as stiffness, viscous damping, and magnitude of friction force (all mass normalized) for various signal-to-noise ratios compared to SINDy.

References

1.
Bouc
,
R.
,
1994
, “
The Power Spectral Density of Response for a Strongly Non-Linear Random Oscillator
,”
J. Sound Vib.
,
175
(
3
), pp.
317
331
.10.1006/jsvi.1994.1331
2.
Caughey
,
T. K.
,
1963
, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1706
1711
.10.1121/1.1918794
3.
Caughey
,
T. K.
,
1960
, “
Random Excitation of a System With Bilinear Hysteresis
,”
ASME J. Appl. Mech.
,
27
(
4
), pp.
649
652
.10.1115/1.3644077
4.
Caughey
,
T. K.
,
1959
, “
Response of Van Der Pol's Oscillator to Random Excitation
,”
ASME J. Appl. Mech.
,
26
(
3
), pp.
345
348
.10.1115/1.4012044
5.
Soize
,
C.
,
1993
, “
Stochastic Linearization Method With Random Parameters and Power Spectral Density Calculation
,”
Paper Presented at the Sixth International Conference on Structural Safety and Reliability
(ICOSSAR'93), Innsbruck, Austria, Dec.,
pp.
143
152
.
6.
Leontaritis
,
I. J.
, and
Billings
,
S. A.
,
1985
, “
Input-Output Parametric Models for Non-Linear Systems Part I: Deterministic Non-Linear Systems
,”
Int. J. Control
,
41
(
2
), pp.
303
328
.10.1080/0020718508961129
7.
Leontaritis
,
I. J.
, and
Billings
,
S. A.
,
1985
, “
Input-Output Parametric Models for Non-Linear Systems Part II: Stochastic Non-Linear Systems
,”
Int. J. Control
,
41
(
2
), pp.
329
344
.10.1080/0020718508961130
8.
Billings
,
S. A.
,
Chen
,
S.
, and
Backhouse
,
R. J.
,
1989
, “
The Identification of Linear and Non-Linear Models of a Turbocharged Automotive Diesel Engine
,”
Mech. Syst. Signal Process.
,
3
(
2
), pp.
123
142
.10.1016/0888-3270(89)90012-5
9.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.10.1016/j.ymssp.2005.04.008
10.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Nat. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
11.
de Silva
,
B. M.
,
Champion
,
K.
,
Quade
,
M.
,
Loiseau
,
J.-C.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2020
, “
PySINDy: A Python Package for the Sparse Identification of Nonlinear Dynamics From Data
,” preprint
arXiv:2004.08424
.10.48550/arXiv.2004.08424
12.
Fasel
,
U.
,
Kaiser
,
E.
,
Kutz
,
J. N.
,
Brunton
,
B. W.
, and
Brunton
,
S. L.
,
2021
, “
Sindy With Control: A Tutorial
,”
Paper Presented at the 60th IEEE Conference on Decision and Control (CDC)
, Austin, TX, Dec. 14-17, pp.
16
21
.10.1109/CDC45484.2021. 9683120
13.
Hoffmann
,
M.
,
Fröhner
,
C.
, and
Noé
,
F.
,
2019
, “
Reactive Sindy: Discovering Governing Reactions From Concentration Data
,”
J. Chem. Phys.
,
150
(
2
), p. 025101.10.1063/1.5066099
14.
Lakshminarayana
,
S.
,
Sthapit
,
S.
, and
Maple
,
C.
,
2022
, “
Application of Physics-Informed Machine Learning Techniques for Power Grid Parameter Estimation
,”
Sustainability
,
14
(
4
), p.
2051
.10.3390/su14042051
15.
Sandoz
,
A.
,
Ducret
,
V.
,
Gottwald
,
G. A.
,
Vilmart
,
G.
, and
Perron
,
K.
,
2023
, “
Sindy for Delay-Differential Equations: Application to Model Bacterial Zinc Response
,”
Proc. R. Soc. A
,
479
(
2269
), p.
20220556
.10.1098/rspa.2022.0556
16.
Huang
,
S.-C.
,
Chen
,
H.-W.
, and
Tien
,
M.-H.
,
2023
, “
Predicting Nonlinear Modal Properties by Measuring Free Vibration Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
4
), p.
041005
.10.1115/1.4056949
17.
Didonna
,
M.
,
Stender
,
M.
,
Papangelo
,
A.
,
Fontanela
,
F.
,
Ciavarella
,
M.
, and
Hoffmann
,
N.
,
2019
, “
Reconstruction of Governing Equations From Vibration Measurements for Geometrically Nonlinear Systems
,”
Lubricants
,
7
(
8
), p.
64
.10.3390/lubricants7080064
18.
Hilborn
,
R. C.
,
2000
,
Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers
,
Oxford University Press
, Oxford, UK.
19.
Marino
,
L.
, and
Cicirello
,
A.
,
2020
, “
Experimental Investigation of a Single-Degree-of-Freedom System With Coulomb Friction
,”
Nonlinear Dyn.
,
99
(
3
), pp.
1781
1799
.10.1007/s11071-019-05443-2
20.
The MathWorks Inc.,
2020
, “MATLAB, Version 9.9.0.1857802 (R2020b),”
The Mathworks Inc
., Natick, MA.
21.
Marino
,
L.
,
Cicirello
,
A.
, and
Hills
,
D. A.
,
2019
, “
Displacement Transmisibiltiy of a Coulomb Friction Oscillator Subject to Joined Base-Wall Motion
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2595
2612
.10.1007/s11071-019-04983-x
22.
Zheng
,
P.
,
Askham
,
T.
,
Brunton
,
S. L.
,
Kutz
,
J. N.
, and
Aravkin
,
A. Y.
,
2019
, “
A Unified Framework for Sparse Relaxed Regularized Regression: Sr3
,”
IEEE Access
,
7
, pp.
1404
1423
.10.1109/ACCESS.2018.2886528
23.
Cabboi
,
A.
,
Marino
,
L.
, and
Cicirello
,
A.
,
2022
, “
A Comparative Study Between Amontons–Coulomb and Dieterich–Ruina Friction Laws for the Cyclic Response of a Single Degree of Freedom System
,”
Eur. J. Mech.-A/Solids
,
96
, p.
104737
.10.1016/j.euromechsol.2022.104737
You do not currently have access to this content.