Abstract

Self-excited vibrations can occur in the spline-shafting system due to internal friction of the tooth surface. However, due to manufacturing errors, design tolerances, and time-varying factors, the parameters that induce self-excited vibrations are always uncertain. This study provides new insights into the uncertainty quantification and sensitivity analysis of a spline-shaft system suffering from self-excited vibrations. The nonintrusive generalized polynomial chaos expansion (gPCE) with unknown deterministic coefficients is used to represent the propagation of uncertainties in the rotor dynamics, which allows rapid estimation of the statistics of the nonlinear responses. Furthermore, the global sensitivity analysis of the stochastic self-excited vibration response of the rotor system with probabilistic uncertain parameters is evaluated by Sobol indices. The relative influence of different random parameters on the vibration behavior and initial displacement conditions for the occurrence of self-excited vibration is investigated. The accuracy of the adopted method based on the gPCE metamodel is validated by conventional Monte Carlo simulation (MCS). Finally, the effects of parameter uncertainties considering random distribution characteristics on the stochastic vibration characteristics of the rotor system are discussed, which demonstrates the need to consider input uncertainties in analysis and design to ensure robust system performance.

References

1.
Hong
,
J.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2014
, “
Load Distribution Analysis of Clearance-Fit Spline Joints Using Finite Elements
,”
Mech. Mach. Theory
,
74
, pp.
42
57
.10.1016/j.mechmachtheory.2013.11.007
2.
Zhao
,
G.
,
Zhao
,
X.
,
Qian
,
L.
,
Yuan
,
Y.
,
Ma
,
S.
, and
Guo
,
M.
,
2022
, “
A Review of Aviation Spline Research
,”
Lubricants
,
11
(
1
), p.
6
.10.3390/lubricants11010006
3.
Guo
,
Y.
,
Lambert
,
S.
,
Wallen
,
R.
,
Errichello
,
R.
, and
Keller
,
J.
,
2016
, “
Theoretical and Experimental Study on Gear-Coupling Contact and Loads Considering Misalignment, Torque, and Friction Influences
,”
Mech. Mach. Theory
,
98
, pp.
242
262
.10.1016/j.mechmachtheory.2015.11.015
4.
Curà
,
F.
, and
Mura
,
A.
,
2013
, “
Experimental Procedure for the Evaluation of Tooth Stiffness in Spline Coupling Including Angular Misalignment
,”
Mech. Syst. Signal Process
,
40
(
2
), pp.
545
555
.10.1016/j.ymssp.2013.06.033
5.
Artiles
,
A. F.
,
1993
, “
The Effects of Friction in Axial Splines on Rotor System Stability
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
272
278
.10.1115/1.2906705
6.
Dai
,
Z.
,
Jing
,
J.
,
Chen
,
C.
, and
Cong
,
J.
,
2018
, “
Extensive Experimental Study on the Stability of Rotor System With Spline Coupling
,”
ASME
Paper No. GT2018-76262. 10.1115/GT2018-76262
7.
Dai
,
Z.
,
Jing
,
J.
,
Chen
,
C.
,
Cong
,
J.
, and
Quan
,
Y.
,
2023
, “
Analytical and Experimental Investigation on Stability of Rotor System With Spline Coupling Considering Torque, Friction Coefficient and External Damping
,”
Mech. Mach. Theory
,
181
, p.
105200
.10.1016/j.mechmachtheory.2022.105200
8.
Bently
,
D. E.
, and
Muszynska
,
A.
,
1985
,
Rotor Internal Friction Instability
,
NASA, Lewis Research Center Instability in Rotating Machinery
, Minden, NV.
9.
Wang
,
T.
,
Wang
,
Y.
,
Liu
,
M.
, and
Zhong
,
Z.
,
2022
, “
Stability Analysis of Rotor With a Spline Coupling
,”
J. Phys. Conf. Ser.
,
2252
(
1
), p.
012001
.10.1088/1742-6596/2252/1/012001
10.
Walton
,
J.
,
Artiles
,
A.
,
Lund
,
J.
,
Dill
,
J.
, and
Zorzi
,
E.
,
1990
, “
Internal Rotor Friction Instability
,” Mechanical Technology Incorporating, Latham, NY, Report No. MTI 88TR39.
11.
Marmol
,
R. A.
,
Smalley
,
A. J.
, and
Tecza
,
J. A.
,
1980
, “
Spline Coupling Induced Nonsynchronous Rotor Vibrations
,”
ASME J. Mech. Des.
,
102
(
1
), pp.
168
176
.10.1115/1.3254709
12.
Roger Ku
,
C. P.
,
Walton
,
J. F.
, and
Lund
,
J. W.
, Jr.
,
1994
, “
Dynamic Coefficients of Axial Spline Couplings in High-Speed Rotating Machinery
,”
ASME J. Vib. Acoust.
,
116
(
3
), pp.
250
256
.10.1115/1.2930421
13.
Zhu
,
H.
,
Chen
,
W.
,
Zhu
,
R.
,
Gao
,
J.
, and
Liao
,
M.
,
2020
, “
Modelling and Dynamic Analysis of Spline-Connected Multi-Span Rotor System
,”
Meccanica
,
55
(
6
), pp.
1413
1433
.10.1007/s11012-020-01163-9
14.
Cuffaro
,
V.
,
Curà
,
F.
, and
Mura
,
A.
,
2012
, “
Analysis of the Pressure Distribution in Spline Couplings
,”
Proc. Inst. Mech. Eng. Part C J. Eng. Mech. Eng. Sci.
,
226
(
12
), pp.
2852
2859
.10.1177/0954406212440670
15.
Curà
,
F.
,
Mura
,
A.
, and
Gravina
,
M.
,
2013
, “
Load Distribution in Spline Coupling Teeth With Parallel Offset Misalignment
,”
Proc. Inst. Mech. Eng. Part C J. Eng. Mech. Eng. Sci.
,
227
(
10
), pp.
2195
2205
.10.1177/0954406212471916
16.
Barrot
,
A.
,
Paredes
,
M.
, and
Sartor
,
M.
,
2009
, “
Extended Equations of Load Distribution in the Axial Direction in a Spline Coupling
,”
Eng. Fail. Anal.
,
16
(
1
), pp.
200
211
.10.1016/j.engfailanal.2008.03.001
17.
Hong
,
J.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2016
, “
A Generalized Semi-Analytical Load Distribution Model for Clearance-Fit, Major-Fit, Minor-Fit, and Mismatched Splines
,”
Proc. Inst. Mech. Eng. Part C J. Eng. Mech. Eng. Sci.
,
230
(
7–8
), pp.
1126
1138
.10.1177/0954406215603741
18.
Curà
,
F.
, and
Mura
,
A.
,
2017
, “
Evaluation of the Fretting Wear Damage on Crowned Splined Couplings
,”
Procedia Struct. Integr.
,
5
, pp.
1393
1400
.10.1016/j.prostr.2017.07.203
19.
Zhao
,
Q.
,
Yu
,
T.
,
Pang
,
T.
, and
Song
,
B.
,
2022
, “
Spline Wear Life Prediction Considering Multiple Errors
,”
Eng. Fail. Anal.
,
131
, p.
105804
.10.1016/j.engfailanal.2021.105804
20.
Xiao
,
L.
,
Xu
,
Y.
,
Chen
,
Z.
, and
Zhang
,
L.
,
2022
, “
Non-Linear Dynamic Response of Misaligned Spline Coupling: Theoretical Modeling and Experimental Investigation
,”
J. Vib. Control
,
29
(7–8), pp.
1590
1605
.10.1177/10775463211067104
21.
Xiao
,
L.
,
Xu
,
Y.
,
Sun
,
X.
,
Xu
,
H.
, and
Zhang
,
L.
,
2022
, “
Experimental Investigation on the Effect of Misalignment on the Wear Failure for Spline Couplings
,”
Eng. Fail. Anal.
,
131
, p.
105755
.10.1016/j.engfailanal.2021.105755
22.
Curà
,
F.
, and
Mura
,
A.
,
2014
, “
Experimental and Theoretical Investigation About Reaction Moments in Misaligned Splined Couplings
,”
Mech. Syst. Signal Process
,
45
(
2
), pp.
504
512
.10.1016/j.ymssp.2013.12.005
23.
Liu
,
S.
,
Ma
,
Y.
,
Zhang
,
D.
, and
Hong
,
J.
,
2012
, “
Studies on Dynamic Characteristics of the Joint in the Aero-Engine Rotor System
,”
Mech. Syst. Signal Process
,
29
, pp.
120
136
.10.1016/j.ymssp.2011.12.001
24.
Zhang
,
Q.
,
Li
,
W.
,
Liang
,
Z.
, and
Hong
,
J.
,
2014
, “
Study on the Stiffness Loss and Its Affecting Factors of the Spline Joint Used in Rotor Systems
,”
ASME
Paper No. GT2014-26176. 10.1115/GT2014-26176
25.
Yu
,
P.
,
Wang
,
C.
,
Liu
,
Y.
, and
Chen
,
G.
,
2022
, “
Analytical Modeling of the Lateral Stiffness of a Spline Coupling Considering Teeth Engagement and Influence on Rotor Dynamics
,”
Eur. J. Mech. A-Solids
,
92
, p.
104468
.10.1016/j.euromechsol.2021.104468
26.
Hong
,
J.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2016
, “
A Stiffness Formulation for Spline Joints
,”
ASME J. Mech. Des.
,
138
(
4
), p.
043301
.10.1115/1.4032631
27.
Hu
,
X.
,
Hu
,
B.
,
Zhang
,
F.
,
Fu
,
B.
,
Li
,
H.
, and
Zhou
,
Y.
,
2018
, “
Influences of Spline Assembly Methods on Nonlinear Characteristics of Spline–Gear System
,”
Mech. Mach. Theory
,
127
, pp.
33
51
.10.1016/j.mechmachtheory.2018.04.029
28.
Xue
,
X.
,
Huo
,
Q.
,
Dearn
,
K. D.
,
Liu
,
J.
, and
Jia
,
J.
,
2021
, “
Involute Spline Couplings in Aero-Engine: Predicting Nonlinear Dynamic Response With Mass Eccentricity
,”
Proc. Inst. Mech. Eng. Part K-J. Multi-Body Dyn.
,
235
(
1
), pp.
75
92
.10.1177/1464419320986290
29.
Ma
,
X.
,
Song
,
Y.
,
Cao
,
P.
,
Li
,
J.
, and
Zhang
,
Z.
,
2023
, “
Self-Excited Vibration Suppression of a Spline-Shafting System Using a Nonlinear Energy Sink
,”
Int. J. Mech. Sci.
,
245
, p.
108105
.10.1016/j.ijmecsci.2023.108105
30.
Cedoz
,
R. W.
, and
Chaplin
,
M. R.
,
1994
,
Design Guide for Involute Splines
,
SAE
,
Warrendale, PA
.
31.
Deutschman
,
A. D.
,
Michels
,
W. J.
, and
Wilson
,
C. E.
,
1975
,
Machine Design, Theory and Practice
,
Collier-Macmillan International, New York
.
32.
Chase
,
K. W.
,
Sorensen
,
C. D.
, and
DeCaires
,
B. J.
,
2010
, “
Variation Analysis of Tooth Engagement and Loads in Involute Splines
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
4
), pp.
746
754
.10.1109/TASE.2009.2033033
33.
Rao
,
S. S.
, and
Tjandra
,
M.
,
1994
, “
Reliability-Based Design of Automotive Transmission Systems
,”
Reliab. Eng. Syst. Saf.
,
46
(
2
), pp.
159
169
.10.1016/0951-8320(94)90133-3
34.
Nobari
,
A.
,
Ouyang
,
H.
, and
Bannister
,
P.
,
2015
, “
Uncertainty Quantification of Squeal Instability Via Surrogate Modelling
,”
Mech. Syst. Signal Process
,
60–61
, pp.
887
908
.10.1016/j.ymssp.2015.01.022
35.
Sarrouy
,
E.
,
Dessombz
,
O.
, and
Sinou
,
J. J.
,
2013
, “
Stochastic Study of a Non-Linear Self-Excited System With Friction
,”
Eur. J. Mech. A-Solids
,
40
, pp.
1
10
.10.1016/j.euromechsol.2012.12.003
36.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
,
2012
, “
Prediction of Random Self Friction-Induced Vibrations in Uncertain Dry Friction Systems Using a Multi-Element Generalized Polynomial Chaos Approach
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041015
.10.1115/1.4006413
37.
Tatar
,
A.
,
Schwingshackl
,
C. W.
, and
Friswell
,
M. I.
,
2019
, “
Dynamic Behaviour of Three-Dimensional Planetary Geared Rotor Systems
,”
Mech. Mach. Theory
,
134
, pp.
39
56
.10.1016/j.mechmachtheory.2018.12.023
38.
Ma
,
X.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2022
, “
Uncertainty Quantization and Reliability Analysis for Rotor/Stator Rub-Impact Using Advanced Kriging Surrogate Model
,”
J. Sound Vib.
,
525
, p.
116800
.10.1016/j.jsv.2022.116800
39.
Xu
,
M.
, and
Marangoni
,
R. D.
,
1994
, “
Vibration Analysis of a Motor Flexible Coupling–Rotor System Subject to Misalignment and Unbalance, Part I: Theoretical Model and Analysis
,”
J. Sound Vib.
,
176
(
5
), pp.
663
679
.10.1006/jsvi.1994.1405
40.
Liu
,
Y.
,
Zhao
,
Y.
,
Li
,
J.
,
Lu
,
H.
, and
Ma
,
H.
,
2020
, “
Feature Extraction Method Based on NOFRFs and Its Application in Faulty Rotor System With Slight Misalignment
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1763
1777
.10.1007/s11071-019-05340-8
41.
Zhang
,
Z.
,
Ma
,
X.
,
Hua
,
H.
, and
Liang
,
X.
,
2020
, “
Nonlinear Stochastic Dynamics of a Rub-Impact Rotor System With Probabilistic Uncertainties
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2229
2246
.10.1007/s11071-020-06064-w
42.
Zhang
,
Z.
,
Ma
,
X.
,
Yu
,
H.
, and
Hua
,
H.
,
2021
, “
Stochastic Dynamics and Sensitivity Analysis of a Multistage Marine Shafting System With Uncertainties
,”
Ocean Eng.
,
219
, p.
108388
.10.1016/j.oceaneng.2020.108388
43.
Yuan
,
J.
,
Fantetti
,
A.
,
Denimal
,
E.
,
Bhatnagar
,
S.
,
Pesaresi
,
L.
,
Schwingshackl
,
C.
, and
Salles
,
L.
,
2021
, “
Propagation of Friction Parameter Uncertainties in the Nonlinear Dynamic Response of Turbine Blades With Underplatform Dampers
,”
Mech. Syst. Signal Process.
,
156
, p.
107673
.10.1016/j.ymssp.2021.107673
You do not currently have access to this content.