Abstract

Converting mechanical vibrations into electrical power with vibratory energy harvesters can ensure the portability, efficiency, and sustainability of electronic devices and batteries. Vibratory energy harvesters are typically modeled as nonlinear oscillators subject to random excitation, and their design requires a complete characterization of their probabilistic responses. However, simulation techniques such as Monte Carlo are computationally prohibitive when the accurate estimation of the response probability distribution is needed. Alternatively, approximate methods such as stochastic averaging can estimate the probabilistic response of such systems at a reduced computational cost. In this paper, the Hilbert transform based stochastic averaging is used to model the output voltage amplitude as a Markovian stochastic process with dynamics governed by a stochastic differential equation with nonlinear drift and diffusion terms. Moreover, the voltage amplitude dependent damping and stiffness terms are determined via an appropriate equivalent linearization, and the stationary probability distribution of the output voltage amplitude is obtained analytically by solving the corresponding Fokker–Plank equation. Two examples are used to demonstrate the accuracy of the obtained analytical probability distributions via comparisons with Monte Carlo simulation data.

References

1.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.10.1103/PhysRevLett.102.080601
2.
Sebald
,
G.
,
Kuwano
,
H.
,
Guyomar
,
D.
, and
Ducharne
,
B.
,
2011
, “
Simulation of a Duffing Oscillator for Broadband Piezoelectric Energy Harvesting
,”
Smart Mater. Struct.
,
20
(
7
), p.
075022
.10.1088/0964-1726/20/7/075022
3.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.10.1007/s11071-012-0327-0
4.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
5.
Rubes
,
O.
,
Brablc
,
M.
, and
Hadas
,
Z.
,
2019
, “
Nonlinear Vibration Energy Harvester: Design and Oscillating Stability Analyses
,”
Mech. Syst. Signal Process.
,
125
, pp.
170
184
.10.1016/j.ymssp.2018.07.016
6.
Jia
,
Y.
,
2020
, “
Review of Nonlinear Vibration Energy Harvesting: Duffing, Bistability, Parametric, Stochastic and Others
,”
J. Intell. Mater. Syst. Struct.
,
31
(
7
), pp.
921
944
.10.1177/1045389X20905989
7.
Yang
,
T.
,
Zhou
,
S.
,
Fang
,
S.
,
Qin
,
W.
, and
Inman
,
D. J.
,
2021
, “
Nonlinear Vibration Energy Harvesting and Vibration Suppression Technologies: Designs, Analysis, and Applications
,”
Appl. Phys. Rev.
,
8
(
3
), p.
031317
.10.1063/5.0051432
8.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.10.1016/j.jsv.2010.04.002
9.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.10.1115/1.4000809
10.
Langley
,
R.
,
2014
, “
A General Mass Law for Broadband Energy Harvesting
,”
J. Sound Vib.
,
333
(
3
), pp.
927
936
.10.1016/j.jsv.2013.09.036
11.
Langley
,
R.
,
2015
, “
Bounds on the Vibrational Energy That Can Be Harvested From Random Base Motion
,”
J. Sound Vib.
,
339
, pp.
247
261
.10.1016/j.jsv.2014.11.012
12.
Dogheche
,
K.
,
Cavallier
,
B.
,
Delobelle
,
P.
,
Hirsinger
,
L.
,
Cattan
,
E.
,
Rèmiens
,
D.
,
Marzencki
,
M.
,
Charlot
,
B.
,
Basrour
,
S.
, and
Ballandras
,
S.
,
2005
, “
A Bi-Stable Micro-Machined Piezoelectric Transducer for Mechanical to Electrical Energy Transformation
,”
Integr. Ferroelectr.
,
76
(
1
), pp.
3
12
.10.1080/10584580500413285
13.
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214103
.10.1063/1.3436553
14.
Zhang
,
Y.
,
Zheng
,
R.
, and
Nakano
,
K.
,
2014
, “
Feasibility of Energy Harvesting From a Rotating Tire Based on the Theory of Stochastic Resonance
,”
J. Phys.: Conf. Ser.
,
557
, p.
012097
.10.1088/1742-6596/557/1/012097
15.
Daqaq
,
M. F.
,
Stabler
,
C.
,
Qaroush
,
Y.
, and
Seuaciuc-Osório
,
T.
,
2009
, “
Investigation of Power Harvesting via Parametric Excitations
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
545
557
.10.1177/1045389X08100978
16.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
Wiley
, West Sussex, UK.
17.
Adhikari
,
S.
,
Friswell
,
M. I.
,
Litak
,
G.
, and
Khodaparast
,
H. H.
,
2016
, “
Design and Analysis of Vibration Energy Harvesters Based on Peak Response Statistics
,”
Smart Mater. Struct.
,
25
(
6
), p.
065009
.10.1088/0964-1726/25/6/065009
18.
Roberts
,
J.
, and
Spanos
,
P.
,
2003
,
Random Vibration and Statistical Linearization (Dover Civil and Mechanical Engineering Series)
,
Dover Publications
, Mineola, NY.
19.
Jiang
,
W.-A.
, and
Chen
,
L.-Q.
,
2016
, “
Stochastic Averaging of Energy Harvesting Systems
,”
Int. J. Non-Linear Mech.
,
85
, pp.
174
187
.10.1016/j.ijnonlinmec.2016.07.002
20.
Xu
,
M.
, and
Li
,
X.
,
2018
, “
Stochastic Averaging for Bistable Vibration Energy Harvesting System
,”
Int. J. Mech. Sci.
,
141
, pp.
206
212
.10.1016/j.ijmecsci.2018.04.014
21.
Sun
,
Y.-H.
, and
Yang
,
Y.-G.
,
2020
, “
Stochastic Averaging for the Piezoelectric Energy Harvesting System With Fractional Derivative Element
,”
IEEE Access
,
8
, pp.
59883
59890
.10.1109/ACCESS.2020.2983540
22.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
23.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2021
, “
Stochastic Response Analysis and Reliability-Based Design Optimization of Nonlinear Electromechanical Energy Harvesters With Fractional Derivative Elements
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
7
(
1
), p.
010901
.10.1115/1.4049232
24.
Katsidoniotaki
,
M. I.
,
Petromichelakis
,
I.
, and
Kougioumtzoglou
,
I. A.
,
2023
, “
Nonlinear Stochastic Dynamics of an Array of Coupled Micromechanical Oscillators
,”
Int. J. Mech. Syst. Dyn.
,
3
(
1
), pp.
3
11
.10.1002/msd2.12066
25.
Spanos
,
P. D.
,
Kougioumtzoglou
,
I. A.
,
dos Santos
,
K. R. M.
, and
Beck
,
A. T.
,
2018
, “
Stochastic Averaging of Nonlinear Oscillators: Hilbert Transform Perspective
,”
J. Eng. Mech.
,
144
(
2
), p.
04017173
.10.1061/(ASCE)EM.1943-7889.0001410
26.
dos Santos
,
K. R. M.
,
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2019
, “
Hilbert Transform Based Stochastic Averaging Technique for Determining the Survival Probability of Nonlinear Oscillators
,”
J. Eng. Mech.
,
145
(
10
), p.
04019079
.10.1061/(ASCE)EM.1943-7889.0001651
27.
Roberts
,
J.
, and
Spanos
,
P.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
,
21
(
2
), pp.
111
134
.10.1016/0020-7462(86)90025-9
28.
Red-Horse
,
J.
, and
Spanos
,
P.
,
1992
, “
A Generalization to Stochastic Averaging in Random Vibration
,”
Int. J. Non-Linear Mech.
,
27
(
1
), pp.
85
101
.10.1016/0020-7462(92)90025-3
29.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.10.1016/j.ymssp.2010.07.018
30.
Stratonovich
,
R.
,
1963
,
Topics in the Theory of Random Noise
, Martino Publishing, Mansfield Center, CT.
31.
Risken
,
H.
, and
Frank
,
T.
,
1992
,
The Fokker–Planck Equation (Springer Series in Synergetics)
, 2nd ed.,
Springer
,
Berlin, Germany
.
You do not currently have access to this content.