Abstract

The reverse engineering of a valid algebraic inequality often leads to a novel physical reality characterized by a distinct signature: the algebraic inequality itself. This paper uses reverse engineering of valid algebraic inequalities for generating new knowledge and substantially improving the reliability of common series-parallel systems. Our study emphasizes that in the case of series-parallel systems with interchangeable redundant components, the asymmetric arrangement of redundancies always leads to higher system reliability than a symmetric arrangement. This finding remains valid, irrespective of the particular reliabilities characterizing the components. Next, the paper also presents algebraic inequalities whose reverse engineering enabled significant enhancement of the reliability of series-parallel systems with asymmetric arrangements of redundant components, irrespective of the component reliabilities. Lastly, the paper presents a new technique for validating complex algebraic inequalities associated with reliability of series-parallel systems. This technique relies on a permutation of variable values and the method of segmentation.

References

1.
Fink
,
A. M.
,
2000
, “
An Essay on the History of Inequalities
,”
J. Math. Anal. Appl.
,
249
(
1
), pp.
118
134
.10.1006/jmaa.2000.6934
2.
Bechenbach
,
E.
, and
Bellman
,
R.
,
1961
,
An Introduction to Inequalities
,
The L.W. Singer Company
,
New York
.
3.
Engel
,
A.
,
1998
,
Problem-Solving Strategies
,
Springer
,
New York
.
4.
Hardy
,
G.
,
Littlewood
,
J. E.
, and
Pólya
,
G.
,
1999
,
Inequalities
,
Cambridge University Press
,
New York
.
5.
Pachpatte
,
B. G.
,
2005
,
Mathematical Inequalities
, Vol.
67
,
Elsevier
,
Amsterdam, The Netherlands
.
6.
Cvetkovski
,
Z.
,
2012
,
Inequalities Theorems, Techniques and Selected Problems
,
Springer-Verlag
,
Berlin
.
7.
Marshall
,
A. W.
,
Olkin
,
I.
, and
Arnold
,
B. C.
,
2010
,
Inequalities: Theory of Majorization and Its Applications
, 2nd ed.,
Springer Science and Business Media
,
New York
.
8.
Steele
,
J. M.
,
2004
,
The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities
,
Cambridge University Press
,
New York
.
9.
Kazarinoff
,
N. D.
,
1961
,
Analytic Inequalities
,
Dover Publications Inc
.,
New York
.
10.
Sedrakyan
,
H.
, and
Sedrakyan
,
N.
,
2010
,
Algebraic Inequalities
,
Springer
, Cham, Switzerland.
11.
Su
,
Y.
, and
Xiong
,
B.
,
2016
,
Methods and Techniques for Proving Inequalities
,
World Scientific Publishing
,
Singapore
.
12.
Cloud
,
M. J.
,
Drachman
,
B. C.
, and
Lebedev
,
L. P.
,
2014
,
Inequalities: With Applications in Engineering
, 2nd ed.,
Springer
,
Heidelberg
.
13.
Samuel
,
A.
, and
Weir
,
J.
,
1999
,
Introduction to Engineering Design: Modelling, Synthesis and Problem-Solving Strategies
,
Elsevier
,
London
.
14.
Rastegin
,
A.
,
2012
, “
Convexity Inequalities for Estimating Generalized Conditional Entropies From Below
,”
Kybernetika
,
48
(
2
), pp.
242
253
.
15.
Liu
,
S.
, and
Lin
,
S.
,
2013
, “
Robust Adaptive Controller Design for Uncertain Fuzzy Systems Using Linear Matrix Inequality Approach
,”
Int. J. Modell. Identif. Control
,
18
(
2
), pp.
110
118
.10.1504/IJMIC.2013.052327
16.
Ebeling
,
C. E.
,
1997
,
Reliability and Maintainability Engineering
,
McGraw-Hill
,
Boston, MA
.
17.
Makri
,
F. S.
, and
Psillakis
,
Z. M.
,
1996
, “
Bounds for Reliability of k-Within Two-Dimensional Consecutive-r-out-of-n Failure Systems
,”
Microelectron. Reliab.
,
36
(
3
), pp.
341
345
.10.1016/0026-2714(95)00102-6
18.
Hill
,
S. D.
,
Spall
,
J. C.
, and
Maranzano
,
C. J.
,
2013
, “
Inequality-Based Reliability Estimates for Complex Systems
,”
Nav. Res. Logistics
,
60
(
5
), pp.
367
374
.10.1002/nav.21539
19.
Berg
,
V. D.
, and
Kesten
,
H.
,
1985
, “
Inequalities With Applications to Percolation and Reliability
,”
J. Appl. Probab.
,
22
(
3
), pp.
556
569
.10.2307/3213860
20.
Kundu
,
C.
, and
Ghosh
,
A.
,
2017
, “
Inequalities Involving Expectations of Selected Functions in Reliability Theory to Characterize Distributions
,”
Commun. Stat. Theory Methods.
,
46
(
17
), pp.
8468
8478
.10.1080/03610926.2016.1183784
21.
Dohmen
,
K.
,
2002
, “
Improved Inclusion-Exclusion Identities and Bonferoni Inequalities With Reliability Applications
,”
SIAM J. Discrete Math.
,
16
(
1
), pp.
156
171
.10.1137/S0895480101392630
22.
Xie
,
M.
, and
Lai
,
C. D.
,
1998
, “
On Reliability Bounds Via Conditional Inequalities
,”
J. Appl. Probab.
,
35
(
1
), pp.
104
114
.10.1239/jap/1032192555
23.
Ben-Haim
,
Y.
,
2005
, “
Info-Gap Decision Theory for Engineering Design. Or: Why ‘Good’ is Preferable to ‘Best’
,”
Engineering Design Reliability Handbook
,
E.
Nikolaidis
,
D. M.
Ghiocel
, and
S.
Singhal
, eds.,
CRC Press
,
Boca Raton, FL
.
24.
Todinov
,
M. T.
,
2020
, “
Using Algebraic Inequalities to Reduce Uncertainty and Risk
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
4
), p.
044501
.10.1115/1.4048403
25.
Todinov
,
M.
, and
Todinov
,
M.
,
2022
, “
Optimising Processes and Generating Knowledge by Interpreting a New Algebraic Inequality
,”
Int. J. Modell. Identif. Control
,
41
(
1/2
), pp.
98
109
.10.1504/IJMIC.2022.127103
26.
Todinov
,
M. T.
,
2023
, “
Reliability-Related Interpretations of Algebraic Inequalities
,”
IEEE Trans. Reliab.
, epub, pp.
1
8
.10.1109/TR.2023.3236407
You do not currently have access to this content.