A general method is shown here to model wind loads and responses for reliability applications. This method characterizes the short-term loads and responses by a few summary statistics: specifically, by a limited number of statistical moments. A suite of moment-based models are derived and applied here, illustrating how this statistical moment information can best be utilized. Two examples are shown: the fatigue analysis of a wind turbine component, and the vibration response of a fixed structure to nonlinear wind drag loads. [S0199-6231(00)00702-4]

1.
Kashef, T., and Winterstein, S. R., 1998, “Relating Turbulence to Wind Turbine Blade Loads: Parametric Study With Multiple Regression Analysis,” Proc., 1998 ASME Wind Energy Symposium, 36th AIAA Aero. Sci. Mtg., pp. 273–281.
2.
Winterstein
,
S. R.
,
1985
, “
Nonnormal Responses and Fatigue Damage.’'
J. Eng. Mech.
,
111
, No.
10
, pp.
1291
1295
.
3.
Winterstein
,
S. R.
,
1988
, “
Nonlinear Vibration Models for Extremes and Fatigue
,”
J. Eng. Mech.
,
114
, No.
10
, pp.
1772
1790
.
4.
Lutes, L. D., and Sarkani, S., 1997, Stochastic Analysis of Structural and Mechanical Vibrations, Prentice-Hall.
5.
Madsen, P. H., Pierce, K., and Buhl, M., 1999, “Predicting Ultimate Loads for Wind Turbine Design,” Proc., 1999 ASME Wind Energy Symposium, 37th AIAA Aero. Sci. Mtg.
6.
Winterstein
,
S. R.
, and
Haver
,
S.
,
1991
, “
Statistical Uncertainties in Wave Heights and Combined Loads on Offshore Structures
,”
J. Offshore Mech. Arct. Eng.
,
114
, No.
10
, pp.
1772
1790
.
7.
Winterstein, S. R., Lange, C. H., and Kumar, S., 1995, FITTING: A Subroutine to Fit Four Moment Probability Distributions to Data, Rept. SAND94-3039, Sandia National Laboratories.
8.
Winterstein
,
S. R.
, and
Lange
,
C. H.
,
1996
, “
Load Models for Fatigue Reliability from Limited Data
,”
ASME J. Sol. Energy Eng.
,
118
, No.
1
, pp.
64
68
.
9.
Kashef, T., and Winterstein, S. R., 1998, “Moment-Based Probability Modelling and Extreme Response Estimation: The FITS Routine,” Rept. RMS-31, Reliability of Marine Structures Program, Dept. of Civ. & Environ. Eng., Stanford University.
10.
Jha, A. K., and Winterstein, S. R., 1997, “Cycles 2.0: Fatigue Reliability Models and Results for Wave and Wind Applications,” Rept. RMS-27, Reliability of Marine Structures Program, Dept. of Civ. Eng., Stanford University.
11.
Winterstein
,
S. R.
,
Ude
,
T. C.
, and
Marthinsen
,
T.
,
1994
, “
Volterra Models of Ocean Structures: Extreme and Fatigue Reliability
,”
J. Eng. Mech.
,
120
, No.
6
, pp.
1369
1385
.
12.
Kotulski
,
Z.
, and
Sobczyk
,
K.
,
1981
, “
Relating Turbulence to Wind Turbine Blade Loads: Parametric Study with Multiple Regression Analysis
,”
J. Stat. Phys.
,
24
, No.
2
, pp.
359
373
.
13.
Grigoriu, M., and Ariaratnam, S. T., 1987, “Stationary Response of Linear Systems to Non-Gaussian Excitations,” Proc., ICASP-5, Lind, N. C., ed., Vancouver, B.C., II, pp. 718–724.
14.
Winterstein, S. R., Ude, T. C., and Kleiven, G., 1994, Springing and Slow-Drift Responses: Predicted Extremes and Fatigue vs. Simulation, Proc., BOSS-94, Vol. 3, Massachusetts Institute of Technology, pp. 1–15.
15.
Winterstein, S. R., and Ness, O. B., 1989, Hermite Moment Analysis of Nonlinear Random Vibration, Computational Mechanics of Probabilistic and Reliability Analysis, Liu, W. K., and Belytschko, T., eds., Elme Press, Lausanne, Switzerland, pp. 452–478.
16.
Winterstein, S. R., and Lo̸set, R., 1990, “Jackup Structures: Nonlinear Forces and Dynamic Response,” Proc., 3rd IFIP Conf. on Reliability and Optimization of Structural Systems, Berkeley, CA.
17.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
, pp.
620
630
.
You do not currently have access to this content.