Conventional methods for the synthesis of fullerenes and carbon nanotubes such as laser or electric arc ablation have failed when the process is scaled up. Our ultimate goal is to scale a solar process up from 2 to 250 kW; this paper shows that our method for achieving this scale-up is valid because we were able to predict process performance variables at the 50 kW level from preliminary experimental results from 2 kW experiments. The key parameters that characterize this process are the carbon soot mass flow rate and the desired product yield. The carbon soot production rate is a function of the target temperature and this can be predicted in a straightforward way from a heat transfer model of the larger system. The yield is a more complicated function of specific reactor variables such as patterns of fluid flow, residence times at various temperatures, and the reaction chemistry, but we have found that for fullerenes it depends primarily on the concentration of carbon vapor in the carrier gas, the target temperature and the temperature distribution in the cooling zone. Using these parameters, we scaled our process up to 50 kW and compared the predicted results to the measured performance. A graphite target 6 cm in diameter was vaporized in an argon atmosphere and a reduced pressure of 120–240 hPa with a solar flux density in the range Vaporization rates as high as 50 g/h were measured with a fullerene production rate equal to about 2 g/h, i.e., the expected results.
Skip Nav Destination
e-mail: flamant@imp.cnrs.fr
Article navigation
February 2002
Technical Papers
Scale up of a Solar Reactor for Fullerene and Nanotube Synthesis
Tony Guillard,
Tony Guillard
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Search for other works by this author on:
Gilles Flamant,
e-mail: flamant@imp.cnrs.fr
Gilles Flamant
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Search for other works by this author on:
Jean-Franc¸ois Robert,
Jean-Franc¸ois Robert
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Search for other works by this author on:
Bruno Rivoire,
Bruno Rivoire
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Search for other works by this author on:
Joseph Giral,
Joseph Giral
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Search for other works by this author on:
Daniel Laplaze
Daniel Laplaze
Groupe de Dynamique des Phases Condense´es, Universite´ Montpellier II, Place E. Bataillon, 34095 MONTPELLIER cedex 05, France
Search for other works by this author on:
Tony Guillard
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Gilles Flamant
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
e-mail: flamant@imp.cnrs.fr
Jean-Franc¸ois Robert
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Bruno Rivoire
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Joseph Giral
Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, IMP-CNRS, BP 5, Odeillo, 66125 FONT ROMEU cedex 5, France
Daniel Laplaze
Groupe de Dynamique des Phases Condense´es, Universite´ Montpellier II, Place E. Bataillon, 34095 MONTPELLIER cedex 05, France
Contributed by the Solar Energy Division of the THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF SOLAR ENERGY ENGINEERING. Manuscript received by the ASME Solar Energy Division, October 2000; final revision March 2001. Associate Editor: D. M. BLAKE
J. Sol. Energy Eng. Feb 2002, 124(1): 22-27 (6 pages)
Published Online: March 1, 2001
Article history
Received:
October 1, 2000
Revised:
March 1, 2001
Citation
Guillard , T., Flamant, G., Robert , J., Rivoire , B., Giral, J., and Laplaze, D. (March 1, 2001). "Scale up of a Solar Reactor for Fullerene and Nanotube Synthesis ." ASME. J. Sol. Energy Eng. February 2002; 124(1): 22–27. https://doi.org/10.1115/1.1434263
Download citation file:
Get Email Alerts
Estimating UV-B, UV-Erithemic, and UV-A Irradiances From Global Horizontal Irradiance and MERRA-2 Ozone Column Information
J. Sol. Energy Eng (April 2025)
Energetic and Exergetic Analyses of a Double-Pass Tubular Absorber for Application in Solar Towers
J. Sol. Energy Eng (October 2024)
Thermal-Hydraulic Investigation of the Delta–Nabla Channel Arrangement in a Solar Collector
J. Sol. Energy Eng (April 2025)
Related Articles
Heat, Mass, and Fluid Flow in a Solar Reactor for Fullerene Synthesis
J. Sol. Energy Eng (May,2001)
On the Oscillation Frequency of Ellipsoidal Fullerene–Carbon Nanotube Oscillators
J. Nanotechnol. Eng. Med (February,2012)
Mechanics of Ellipsoidal Carbon Onions Inside Multiwalled Carbon Nanotubes
J. Nanotechnol. Eng. Med (February,2012)
Heterogeneous Material Mechanics at Various Scales
Appl. Mech. Rev (June,1994)
Related Proceedings Papers
Related Chapters
In vivo PDT studies with fullerenes
Photodynamic Therapy Mediated by Fullerenes and their Derivatives
Conclusion & executive summary
Photodynamic Therapy Mediated by Fullerenes and their Derivatives
Introduction to fullerenes and PDT
Photodynamic Therapy Mediated by Fullerenes and their Derivatives