A solar dynamic (SD) power system composed of a concentrating solar collector and an irreversible Brayton cycle system is set up, where the heat losses of the collector are dominated by the radiation, the heat transfer between the collector and the Brayton cycle system obeys Newton’s law, and the heat transfer between the Brayton cycle system and the ambient obeys the radiant heat transfer law. The cycle model is used to investigate synthetically the influence of the radiant heat losses of the collector, the finite-rate heat transfer, and the irreversible adiabatic processes in the Brayton cycle system on the performance of a space SD power Brayton system. The overall efficiency of the system and the other performance parameters are optimized. The optimal values of the important parameters and their corresponding upper or lower bounds are determined. Finally, the optimal performance of an endoreversible SD power Carnot system is simply derived.

1.
Hendricks
,
T. J.
, and
Huang
,
C.
, 2000, “
High-Performance Radial AMTEC Cell Design for Ultra-High-Power Solar AMTEC Systems
,”
J. Sol. Energy Eng.
0199-6231,
122
, pp.
49
55
.
2.
Raja
,
R. M.
, 2003, “
Space Solar Cells-Trade Off Analysis
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
77
, pp.
175
208
.
3.
Staff of Solar Dynamic System Branch, 1993, “
Solar Dynamic Power System Development for Space Station Freedom
,” Lewis Research Center, Cleveland, OH, NASA reference publication, p.
1310
.
4.
Calopgeras
,
J. E.
,
Dustin
,
M. O.
, and
Secunde
,
R. R.
, 1991, “
Solar Dynamic Power for Earth Orbital and Lunar Application
,” NASA TM 104511.
5.
Diao
,
Z. G.
, 1992, “
Performance Evaluation of Space Solar Brayton Power System
,” ASME, Paper 92-GT-96.
6.
Wu
,
Y.
,
Ren
,
J.
,
Guo
,
Z.
,
Liang
,
X.
, 2003, “
Optimal Analysis of A Space Solar Dynamic Power System
,”
Space Energy and Transportation
,
74
, pp.
205
215
.
7.
Badescu
,
V.
, 1995, “
Optimization of A Solar Space Power System on the Thermodynamic Cycles
,”
Int. J. Sol. Energy
0142-5919,
16
, pp.
263
275
.
8.
Chen
,
J.
, 1997, “
The Maximum Efficiency of Solar Radiant Engine
,”
Solar Energy and Transportation
,
2
, pp.
197
205
.
9.
Badescu
,
V.
, 2004, “
Simulation of A Solar Stirling Engine Operation under Various Weather Conditions on Mars
,”
J. Sol. Energy Eng.
0199-6231,
126
, pp.
813
818
.
10.
Blank
,
D. A.
, and
Wu
,
C.
, 1995, “
Power Optimization of An Extra-Terrestrial, Solar Radiant Stirling Heat Engine
,”
Energy
0360-5442,
20
, pp.
523
530
.
11.
Audy
,
Ch.
,
Fischer
,
M.
, and
Messerschmid
,
E. W.
, 1999, “
Nonsteady Behaviour of Solar Dynamic Power Systems With Strling Cycle for Space Stations
,”
Aerosp. Sci. Technol.
1270-9638,
1
, pp.
49
58
.
12.
Blank
,
D. A.
, and
Wu
,
C.
, 1998, “
Finite-Time Power Limit for Solar-Radiant Ericsson Engines in Space Applications
,”
Appl. Therm. Eng.
1359-4311,
18
, pp.
1347
1357
.
13.
Arkhangelsky
,
V. I.
,
Chvanov
,
V. K.
,
Pavlov
,
K. A.
, and
Samsonov
,
V. L.
, 1995, “
Space Closed Brayton Power System Technique
,”
Proceedings of the European Space Power Conference
Paris
, France.
14.
Wong
,
R. Y.
,
Klassen
,
H. A.
, and
Evans
,
R. C.
, 1970, “
Effect of Operating Parameters on Net Power Output of a 2-to-10-kilowatt Brayton Rotating Component
,” NASA, TN D-5815.
15.
Klann
,
L. J.
, 1970, “
Steady-State Analysis of A Brayton Space Power System
,” NASA, TN D-5673.
16.
Mock
,
E. A.
, 1977, “
Closed Cycle Gas Turbine Optimization-Procedures and Examples
,”
Air Research Report
,
31
, p.
2635
.
17.
Lior
,
N.
, 1997, “
Advanced Energy Conversion to Power
,”
Energy Convers. Manage.
0196-8904,
38
, pp.
941
955
.
18.
Glassman
,
A. J.
, and
Staward
,
W. I.
, 1963, “
A Look at the Thermodynamic Characteristics of Brayton Cycle for Space Power
,”
AIAA J.
0001-1452,
63
,
218
.
19.
Harper
,
W. B.
,
Boyle
,
V. B.
, and
Kudija
,
C. T.
, 1990, “
Solar Dynamic CBC Power for Space Station Freedom
,” ASME, Paper 90-GT-78.
20.
Chen
,
J.
, 1996, “
Thermodynamic Analysis of A Solar-Driven Thermoelectric Generator
,”
J. Appl. Phys.
0021-8979,
79
, pp.
2717
2721
.
21.
Yan
,
Z.
, and
Chen
,
J.
, 1997, “
Optimal Performance of A Solar-Driven Heat Engine System at Maximum Overall Efficiency
,”
Int. J. Power Energy Syst.
0226-1472,
17
, pp.
103
106
.
22.
Salah
,
E. M. M.
, 1999, “
Thermodynamic Optimization of Irreversible Solar Heat Engines
,”
Renewable Energy
0960-1481,
17
, pp.
183
190
.
23.
Kandpal
,
T. C.
,
Singhal
,
A. K.
, and
Mathur
,
S. S.
, 1983, “
Optimum Power From A Solar Thermal Plant Using Solar Concentrators
,”
Energy Convers. Manage.
0196-8904,
23
, pp.
103
106
.
24.
Badescu
,
V.
, 1996, “
Optimum Design and Operation of a Dynamic Solar Power System
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
151
160
.
25.
Wu
,
C.
, and
Kiang
,
R.
, 1991, “
Power Performance of A Nonisentropic Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
, pp.
501
504
.
26.
Wu
,
C.
,
Chen
,
L.
, and
Chen
,
J.
, 1999,
Recent Advances in Finite-Time Thermodynamics
,
Nova Sci. Publishers, Inc.
,
New York
.
27.
Kreider
,
J. F.
, and
Kreith
,
F.
, 1982,
Solar Heating and Cooling: Active and Passive Design
,
Hemisphere Publishing Corp.
,
Washington
.
28.
Böer
,
K.
, 1983,
Advances in Solar Energy
, Vol.
1
,
American Solar Energy Society
,
Boulder
, CO, pp.
209
240
.
You do not currently have access to this content.