Background. The development of alternative processes to eliminate pathogenic agents in water is a matter of growing interest. Current drinking water disinfection procedures, such as chlorination and ozonation, can generate disinfection by-products with carcinogenic and mutagenic potential and are not readily applicable in isolated rural communities of less-favored countries. Solar disinfection processes are of particular interest to water treatment in sunny regions of the Earth. Solar light may be used to activate a photocatalyst or photosensitizer that generates, in the presence of molecular oxygen dissolved in water, reactive oxygen species (ROS), such as the HO radical, singlet oxygen (O21), or superoxide (O2), which are toxic to waterborne microorganisms. Method of Approach. Wild and collection-type Escherichia coli have been selected as model bacteria. Inactivation of such bacteria by either TiO2 nanoparticles, water-soluble tris(2,2-bipyridine)ruthenium(II) dichloride or Rose bengal (RB) subject to simulated sunlight have been compared. Although TiO2 is the prototypical material for heterogeneous photocatalysis, the other two dyes are known to generate significant amounts of O21 by photosensitization but have different chemical structures. The concentration of dye, illumination time, photostability, presence of scavengers, and post-treatment regrowth of bacteria have been investigated. Results. After 1hr of solar illumination the Ru(II) complex produced a strong loss of E. coli culturability monitored with solid selective agars. Both the collection- and wild-type bacteria are sensitive to the treatment with 2-10mgL1 of dye. This photosensitizer showed a better inactivation effect than TiO2 and the anionic organic dye RB due to a combination of visible light absorption, photostability, and production of O21 and other ROS when bound to the bacterial membrane. A complete loss of culturability was observed when the initial concentration was 103CFUmL1, with no bacteria regrowth detected after 24hr of the water treatment. At higher initial microorganism levels, culturability still remains and regrowth is observed. Scavengers show that the HO radical is not involved in bacteria inactivation by photosensitization. Conclusions. A higher quantum yield of ROS generation by the sensitizing dyes compared to the semiconductor photocatalyst determines the faster sunlight-activated water disinfection of photodynamic processes. The homogeneous nature of the latter determines a more efficient interaction of the toxic intermediates with the target microorganisms. Solid supporting of the Ru(II) dye is expected to eliminate the potentials problems associated to the water-soluble dye.

1.
Richardson
,
S. D.
, and
Ternes
,
T. A.
, 2005, “
Water Analysis: Emerging Contaminants and Current Issues
,”
Anal. Chem.
0003-2700,
77
, pp.
3807
3838
.
2.
Faust
,
B. C.
, 1999, “
Aquatic Photochemical Reactions in Atmospheric, Surface, and Marine Waters: Influences on Oxidant Formation and Pollutant Degradation
,”
The Handbook of Environmental Chemistry
,
Boule
,
P.
ed.,
Springer-Verlag
,
Berlin
, Vol.
2
, Part L:
Environmental Photochemistry
, pp.
101
122
.
3.
Rincon
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Bactericidal Action of Illuminated TiO2 on Pure Escherichia coli and Natural Bacterial Consortia: Post Irradiation Events in the Dark and Assessment of the Efficient Disinfection Time
,”
Appl. Catal., B
0926-3373,
49
, pp.
99
112
.
4.
Rincon
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Field Solar E. coli Inactivation in the Absence and Presence of TiO2: Is UV Solar Dose an Appropriate Parameter for Standardization of Water Solar Disinfection?
,”
Sol. Energy
0038-092X,
77
, pp.
635
648
.
5.
Dahl
,
T. A.
,
Midden
,
W. R.
, and
Hartman
,
P. E.
, 1987, “
Pure Singlet Oxygen Cytotoxicity for Bacteria
,”
Photochem. Photobiol.
0031-8655,
46
, pp.
345
352
.
6.
Dahl
,
T. A.
, 1993, “
Direct Exposure of Mammalian Cells to Pure Exogenous Singlet Oxygen (Δg1O2)
,”
Photochem. Photobiol.
0031-8655,
57
, pp.
248
254
.
7.
Sies
,
H.
, and
Menck
,
C.
, 1992, “
Singlet Oxygen Induced DNA Damage
,”
Mutat Res.
0027-5107,
275
, pp.
367
375
.
8.
Hergueta-Bravo
,
A.
,
Jiménez-Hernández
,
M. E.
,
Oliveros
,
E.
,
Montero
,
F.
, and
Orellana
,
G.
, 2002, “
Singlet Oxygen-Mediated DNA Photocleavage With Ru(II) Polypyridyl Complexes
,”
J. Phys. Chem. B
1089-5647,
106
, pp.
4010
4017
, and references therein.
9.
Geoffroy
,
M.
,
Lambelet
,
P.
, and
Richert
,
P.
, 2000, “
Role Of Hydroxyl Radicals and Singlet Oxygen in the Formation Primary Radicals in Unsaturated Lipids: A Solid-State Electron Paramagnetic Resonance Study
,”
J. Agric. Food Chem.
0021-8561,
48
, pp.
974
978
.
10.
Mills
,
A.
,
Davies
,
R.
, and
Worsley
,
D.
, 1993, “
Water Purification by Semiconductor Photocatalysis
,”
Chem. Soc. Rev.
0306-0012,
22
, pp.
417
426
.
11.
Fujishima
,
A.
,
Rao
,
T. N.
, and
Tryk
,
D. A.
, 2000, “
Titanium Dioxide Photocatalysis
,”
J. Photochem. Photobiol. C
1389-5567,
1
, pp.
1
21
.
12.
Cabiscol
,
E.
,
Tamarit
,
J.
, and
Ros
,
J.
, 2000, “
Oxidative Stress in Bacteria and Protein Damage by Reactive Oxygen Species
,”
Int. Microbiol.
,
3
, pp.
3
8
.
13.
Blake
,
D. M.
,
Maness
,
P.-Ch.
,
Huang
,
Z.
,
Wolfrum
,
E. J.
,
Huang
,
J.
, and
Jacoby
,
W. A.
, 1999, “
Application of The Photocatalytic Chemistry of Titanium Dioxide to Disinfection and Killing of Cancer Cells
,”
Sep. Purif. Methods
0360-2540,
28
, pp.
1
50
.
14.
Srinivasan
,
C.
, and
Somasundaram
,
N.
, 2003, “
Bactericidal and Detoxification of Irradiated Semiconductor Catalyst TiO2
,”
Curr. Sci.
0011-3891,
85
, pp.
1431
1439
.
15.
Huang
,
Z.
,
Maness
,
P.-Ch.
,
Blake
,
D. M.
,
Wolfrum
,
E. J.
,
Smolinski
,
S.
, and
Jacoby
,
W. A.
, 2000, “
Bactericidal Mode of Titanium Dioxide Photocatalysis
,”
J. Photochem. Photobiol., A
1010-6030,
130
, pp.
163
170
.
16.
Schweitzer
,
C.
, and
Schmidt
,
R.
, 2003, “
Physical Mechanisms of Generation and Deactivation of Singlet Oxygen
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
103
, pp.
1685
1758
.
17.
Jori
,
G.
, and
Brown
,
S. B.
, 2004, “
Photosensitized Inactivation of Microorganisms
,”
Photochem. Photobiol. Sci.
1474-905X,
3
, pp.
403
405
.
18.
Acher
,
A. J.
, and
Juven
,
B. J.
, 1977, “
Destruction of Coliforms in Water and Sewage Water by Dye-Sensitized Photooxidation
,”
Appl. Environ. Microbiol.
0099-2240,
33
, pp.
1019
1022
.
19.
Schafer
,
M.
,
Schmitz
,
C.
,
Facius
,
R.
,
Horneck
,
G.
,
Milow
,
B.
,
Funken
,
K.-H.
, and
Ortner
,
J.
, 2000, “
Systematic Study of Parameters Influencing the Action of Rose Bengal With Visible Light on Bacterial Cells: Comparison Between the Biological Effect and Singlet-Oxygen Production
,”
Photochem. Photobiol.
0031-8655,
71
, pp.
514
523
.
20.
Bonnet
,
R.
,
Buckley
,
D. G.
,
Burrow
,
T.
,
Galia
,
A. A. B.
,
Saville
,
B.
, and
Songca
,
B.
, 1993, “
Photobactericidal Materials Based on Phorphyrins and Phtalocyanines
,”
J. Mater. Chem.
0959-9428,
3
, pp.
323
324
.
21.
Cooper
,
A.
,
Goswami
,
D. Y.
, 2002, “
Evaluation of Methylene Blue and Rose Bengal for Dye Sensitized Solar Water Treatment
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
305
311
.
22.
Acher
,
A.
,
Fischer
,
E.
,
Turnheim
,
R.
, and
Manor
,
Y.
, 1997, “
Ecologically Friendly Wastewater Disinfection Techniques
,”
Water Res.
0043-1354,
31
, pp.
1398
1404
.
23.
García-Fresnadillo
,
D.
,
Georgiadou
,
Y.
,
Orellana
,
G.
,
Braun
,
A. M.
, and
Oliveros
,
E.
, 1996, “
Singlet Oxygen Production by Ruthenium(II) Complexes Containing Polyazaheterocyclic Ligands in Methanol and in Water
,”
Helv. Chim. Acta
0018-019X,
79
, pp.
1222
1238
.
24.
Gutiérrez
,
M. I.
,
Martínez
,
C. G.
,
García-Fresnadillo
,
D.
,
Castro
,
A. M.
,
Orellana
,
G.
,
Braun
,
A. M.
, and
Oliveros
,
E.
, 2003, “
Singlet Oxygen (Δg1) Production by Ruthenium(II) Complexes in Microheterogeneous Systems
,”
J. Phys. Chem. A
1089-5639,
107
, pp.
3397
3403
.
25.
Juris
,
A.
,
Balzani
,
V.
,
Barigelletti
,
F.
,
Campagna
,
S.
,
Belser
,
P.
, and
von Zelewski
,
A.
, 1988, “
Ru(II) Polypyridine Complexes. Photophysics, Photochemistry, Electrochemistry and Chemiluminescence
,”
Coord. Chem. Rev.
0010-8545,
84
, pp.
85
277
.
26.
Orellana
,
G.
,
Jiménez-Hernández
,
M. E.
, and
García-Fresnadillo
,
D.
, 2003, “
Photocatalytic Material and Method for Water Disinfection
,” Spanish Patent No. 2,226,576.
27.
Jiménez-Hernández
,
M. E.
,
Manjón
,
F.
,
García-Fresnadillo
,
D.
, and
Orellana
,
G.
, 2005, “
Solar Water Disinfection by Singlet Oxygen Photogenerated With Polymer-Supported Ru(II) Sensitizers
,”
Sol. Energy
0038-092X,
80
, pp.
1382
1387
.
28.
Jiménez-Hernández
,
M. E.
,
Portolés
,
T.
,
Montero
,
G.
, and
Orellana
,
G.
, 2000, “
Cell Viability Measurements Using Luminescent Ruthenium(II) Probes
,”
Photochem. Photobiol.
0031-8655,
72
, pp.
28
34
.
29.
Grela
,
M. A.
, and
Colussi
,
A. J.
, 1996, “
Kinetics and Stochastic Charge Transfer and Recombination Events in Semiconductor Colloids: Relevance to Photocatalysis Efficiency
,”
J. Phys. Chem.
0022-3654,
100
, pp.
18214
18221
.
30.
Schwarz
,
P. F.
,
Turro
,
N. J.
,
Bossmann
,
S. H.
,
Braun
,
A. M.
,
Abdel Wahab
,
A.-M. A.
, and
Durr
,
H.
, 1997, “
A New Method to Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions
,”
J. Phys. Chem. B
1089-5647,
101
, pp.
7127
7134
.
31.
Nowakowska
,
M.
,
Kepczynski
,
M.
, and
Szczubialka
,
K.
, 2001, “
New Polymeric Photosensitizers
,”
Pure Appl. Chem.
0033-4545,
73
, pp.
491
495
.
32.
Dahl
,
T. A.
, 1994, “
Examining the Role of Singlet Oxygen in Photosensitized Cytotoxicity
,”
Aquatic and Surface Photochemistry
,
Helz
,
R. G.
, and
Crosby
,
D. G.
, eds.,
CRC Press
,
Boca Raton
, pp.
241
258
.
33.
Jiménez-Hernández
,
M. E.
, 2001, “
Luminescent Complexes of Ru(II) With Dibenzodipyridophenazine: DNA Interaction, Cell Viability Determinations, and Singlet Oxygen (Δg1) Photosensitization
,” Ph.D. thesis, Universidad Complutense, Madrid.
34.
Salmon-Divon
,
M.
,
Nitzan
,
Y.
, and
Malik
,
Z.
, 2004, “
Mechanistic Aspects of Escherichia coli Photodynamic Inactivation by Cationic Tetra-Meso(N-methylpyridyl)porphine
,”
Photochem. Photobiol. Sci.
1474-905X,
3
, pp.
423
429
.
35.
Lambert
,
C. R.
, and
Kochevar
,
I.
, 1997, “
Electron Transfer Quenching of the Rose Bengal Triplet State
,”
Photochem. Photobiol.
0031-8655,
66
, pp.
15
25
.
36.
Seybold
,
P. G.
,
Gouterman
,
M.
, and
Callis
,
J.
, 1969, “
Calorimetric, Photometric and Lifetime Determinations of Fluorescence Yields of Fluorescein Dyes
,”
Photochem. Photobiol.
0031-8655,
9
, pp.
229
242
.
37.
Dorfman
,
L. M.
, and
Adams
,
G. E.
, 1973, “
Reactivity of Hydroxyl Radical in Aqueous Solutions
,” National Standards Reference Data Service, National Bureau of Standards, No. C13.48:46, Gaithersburg, MD.
38.
Dobrucki
,
J. W.
, 2001, “
Interaction of Oxygen Sensitive Luminescent Probes Ru(phen)32+ and Ru(bpy)32+ With Animal and Plant Cells In Vitro: Mechanism of Phototoxicity and Conditions for Non-Invasive Oxygen Measurements
,”
J. Photochem. Photobiol., B
1011-1344,
65
, pp.
136
144
.
39.
Piette
,
J.
, 1991, “
Biological Consequences Associated with DNA Oxidation Mediated by Singlet Oxygen
,”
J. Photochem. Photobiol., B
1011-1344,
11
, pp.
241
260
.
40.
Boaretti
,
M.
,
Lleo
,
M. M.
,
Bonato
,
B.
,
Signoretto
,
C.
, and
Canepari
,
P.
, 2003, “
Involvement of RpoS in the Survival of Escherichia coli in the Viable but Non-Cultivable State
,”
Environ. Microbiol.
1462-2912,
5
, pp.
986
996
.
You do not currently have access to this content.