We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid–solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U.S., by using less than 0.7% of the U.S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.

References

1.
Repice
,
R.
,
2011
, “Annual Energy Review 2010,” DOE/EIA-0384(2010), U.S. Energy Information Administration, Washington, DC.
3.
Shapouri
,
H.
,
Gallagher
,
P. W.
,
Nefstead
,
W.
,
Schwartz
,
R.
,
Noe
,
S.
, and
Conway
,
R.
,
2010
, “2008 Energy Balance for the Corn-Ethanol Industry,” Agricultural Economic Report Number 846, United States Department of Agriculture, Washington, DC.
4.
Fletcher
,
E. A.
, and
Moen
,
R. L.
,
1977
, “
Hydrogen and Oxygen From Water
,”
Science
,
197
(
4308
), pp.
1050
1056
.10.1126/science.197.4308.1050
5.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
(
5
), pp.
467
475
.10.1016/0038-092X(77)90102-5
6.
Galvez
,
M. E.
,
Loutzenhiser
,
P. G.
,
Hischier
,
I.
, and
Steinfeld
,
A.
,
2008
, “
CO2 Splitting via Two-Step Solar Thermochemical Cycles With Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis
,”
Energy Fuels
,
22
(
5
), pp.
3544
3550
.10.1021/ef800230b
7.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
.10.1115/1.2969781
8.
Henao
,
C. A.
,
Maravelias
,
C. T.
,
Miller
,
J. E.
, and
Kemp
,
R. A.
,
2010
, “
Foundations of Computer-Aided Process Design
,”
Synthetic Production of Methanol Using Solar Power
,
CRC Press
,
Boca Raton
, FL.
9.
Kim
,
J.
,
Henao
,
C. A.
,
Johnson
,
T. A.
,
Dedrick
,
D. E.
,
Miller
,
J. E.
,
Stechel
,
E. B.
, and
Maravelias
,
C. T.
,
2011
, “
Methanol Production From CO2 Using Solar-Thermal Energy: Process Development and Techno-Economic Analysis
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3122
3132
.10.1039/c1ee01311d
10.
Pohl
,
P. I.
,
Brown
,
L. C.
,
Chen
,
Y.
,
Diver
,
R. B.
,
Besenbruch
,
G. E.
,
Earl
,
B. L.
,
Jones
,
S. A.
, and
Perret
,
R. F.
,
2004
, “
Evaluation of Solar Thermo-Chemical Reactions for Hydrogen Production
,” 12th International Symposium on Solar Power and Chemical Energy Systems, Oaxaca, Mexico, October 6–8.
11.
Kolb
,
G. J.
, and
Diver
,
R. B.
,
2008
, “
Screening Analysis of Solar Thermochemical Hydrogen Concepts
,” Sandia Report No. SAND2008-1900, Sandia National Laboratories, Albuquerque, NM.
12.
Funk
,
J. E.
, and
Reinstrom
,
R. M.
,
1966
, “
Energy Requirements in the Production of Hydrogen From Water
,”
Ind. Eng. Chem. Process Des.
,
5
(
3
), pp.
336
342
.10.1021/i260019a025
13.
O'Keefe
,
D.
,
Allen
,
C.
,
Besenbruch
,
G.
,
Brown
,
L. C.
,
Norman
,
J.
, and
Sharp
,
R.
,
1982
, “
Preliminary Results From Bench-Scale Testing of a Sulfur-Iodine Thermochemical Water-Splitting Cycle
,”
Int. J. Hydrogen Energy
,
7
(
5
), pp.
381
392
.10.1016/0360-3199(82)90048-9
14.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
,
27
(
6
), pp.
611
619
.10.1016/S0360-3199(01)00177-X
15.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Konstandopoulos
,
A. G.
,
Nalbandian
,
L.
,
Zaspalis
,
V. T.
,
Sattler
,
C.
,
Stobbe
,
P.
, and
Steele
,
A. M.
,
2005
, “
Solar Water Splitting for Hydrogen Production With Monolithic Reactors
,”
Sol. Energy
,
79
(
4
), pp.
409
421
.10.1016/j.solener.2005.02.026
16.
Kaneko
,
H.
,
Miura
,
T.
,
Fuse
,
A.
,
Ishihara
,
H.
,
Taku
,
S.
,
Fukuzumi
,
H.
,
Naganuma
,
Y.
, and
Tamaura
,
Y.
,
2007
, “
Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process
,”
Energy Fuels
,
21
(
4
), pp.
2287
2293
.10.1021/ef060581z
17.
Gokon
,
N.
,
Takahashi
,
S.
,
Yamamoto
,
H.
, and
Kodama
,
T.
,
2008
, “
Thermochemical Two-Step Water-Splitting Reactor With Internally Circulating Fluidized Bed for Thermal Reduction of Ferrite Particles
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2189
2199
.10.1016/j.ijhydene.2008.02.044
18.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbot
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1800
.10.1126/science.1197834
19.
Wentorf
,
R. H.
, and
Hanneman
,
R. E.
,
1974
, “
Thermochemical Hydrogen Generation
,”
Science
,
185
(
4148
), pp.
311
319
.10.1126/science.185.4148.311
20.
Abraham
,
B. M.
, and
Schreiner
,
F.
,
1974
, “
General Principles Underlying Chemical Cycles Which Thermally Decompose Water into the Elements
,”
Ind. Eng. Chem. Fundam.
,
13
(
4
), pp.
305
310
.10.1021/i160052a002
21.
Fletcher
,
E. A.
,
2001
, “
Solarthermal Processing: A Review
,”
ASME J. Sol. Energy Eng.
,
123
(
2
), pp.
63
74
.10.1115/1.1349552
22.
Siegel
,
N. P.
,
Diver
,
R. B.
, and
Miller
,
J. E.
,
2009
, “
Reactive Structures for Two-Step Thermochemical Cycles Based on Non-Volatile Metal Oxides
,”
ASME
2009 3rd International Conference on Energy Sustainability, San Francisco, CA, June 19–23, Vol. 2, pp.
431
437
.10.1115/ES2009-90093
23.
Diver
,
R. B.
,
Miller
,
J. E.
, and
Siegel
,
N. P.
,
2010
, “
Testing of a CR5 Solar Thermochemical Heat Engine Prototype
,”
ASME
2010 4th International Conference on Energy Sustainability, Phoenix, AZ, May 17–22, Vol. 2, pp.
97
104
.10.1115/ES2010-90093
24.
Miller
,
J. E.
,
Diver
,
R. B.
,
Siegel
,
N. P.
,
Coker
,
E. N.
,
Ambrosini
,
A.
,
Rodriguez
,
M. A.
,
Garino
,
T. J.
,
Dedrick
,
D. E.
,
Johnson
,
T. A.
,
Allendorf
,
M. D.
,
McDaniel
,
A. H.
,
Kellogg
,
G. L.
,
Ermanoski
,
I.
,
Hogan
,
R. E.
,
Chen
,
K. S.
, and
Stechel
,
E. B.
,
2011
, “
Energy Technology 2010: Conservation, Greenhouse Gas Reduction and Management, Alternative Energy Sources
,”
Sunshine to Petrol: Solar Thermochemistry for Liquid Fuels
,
Wiley
,
New York
.
25.
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
Diver
,
R. B.
,
Ermanoski
,
I.
,
Evans
,
L. R.
,
Hogan
,
R. E.
, and
McDaniel
,
A.
,
2012
, “
Development and Assessment of Solar-Thermal-Activated Fuel Production: Phase 1 Summary
,” Report No. SAND2012-5658, Sandia National Laboratories, Albuquerque, NM.
26.
Olds
Elevator
, Nov. 18,
2011
, http://www.oldselevator.com/
27.
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Evans
,
L. R.
,
Siegel
,
N. P.
, and
Stuecker
,
J. N.
,
2008
, “
Metal Oxide Composites and Structures for Ultra-High Temperature Solar Thermochemical Cycles
,”
J. Mater. Sci.
,
43
(
14
), pp.
4714
4728
.10.1007/s10853-007-2354-7
28.
Steinfeld
,
A.
,
Sanders
,
S.
, and
Palumbo
,
R.
,
1999
, “
Design Aspects of Solar Thermochemical Engineering—A Case Study: Two-Step Water-Splitting Cycle Using the Fe3O4/FeO Redox System
,”
Sol. Energy
,
65
(
1
), pp.
43
53
.10.1016/S0038-092X(98)00092-9
29.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipinski
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
.10.1016/j.energy.2011.10.045
30.
Kodama
,
T.
,
Enomoto
,
S.-I.
,
Hatamachi
,
T.
, and
Gokon
,
N.
,
2008
, “
Application of and Internally Circulating Fluidized Bed for Windowed Solar Chemical Reactor With Direct Irradiation of Reacting Particles
,”
ASME J. Sol. Energy Eng.
,
130
(
1
), p.
014504
.10.1115/1.2807213
31.
Darcy
,
H.
,
1856
,
Les Fontaines Publiques de la Ville de Dijon
, Libraire des Corps Impériaux des Ponts et Chausées et des Mines,
Paris
.
32.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
.10.1016/j.solener.2005.12.005
33.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.10.1016/0022-3697(75)90192-4
34.
McDaniel
,
A.
, and
Chueh
,
W. C.
,
2011
, personal communication.
35.
Coker
,
E. N.
,
Ambrosini
,
A.
,
Rodriguez
,
M. A.
, and
Miller
,
J. E.
,
2011
, “
Ferrite-YSZ Composites for Solar Thermochemical Production of Synthetic Fuels: In Operando Characterization of CO2 Reduction
,”
J. Mater. Chem.
,
21
(
29
), pp.
10767
10776
.10.1039/c1jm11053e
36.
Ricken
,
M.
,
Nölting
,
J.
, and
Riess
,
I.
,
1984
, “
Specific Heat and Phase Diagram of Nonstoichiometric Ceria (CeO2-x)
,”
J. Solid State Chem.
,
54
(
1
), pp.
89
99
.10.1016/0022-4596(84)90135-X
37.
Ivy
,
J.
,
2004
, “
Summary of Electrolytic Hydrogen Production
,” NREL Report No. NREL/MP-560-36734, National Renewable Energy Laboratory, Golden, CO.
38.
Dincer
,
I.
,
2002
, “
Technical, Environmental and Exergetic Aspects of Hydrogen Energy Systems
,”
Int. J. Hydrogen Energy
,
27
(
3
), pp.
265
285
.10.1016/S0360-3199(01)00119-7
39.
Mancini
,
T.
,
Heller
,
P.
,
Butler
,
B.
,
Osborn
,
B.
,
Schiel
,
W.
,
Goldberg
,
V.
,
Buck
,
R.
,
Diver
,
R. B.
,
Andraka
,
C.
, and
Moreno
,
J.
,
2003
, “
Dish-Stirling Systems: An Overview of Development and Status
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
135
151
.10.1115/1.1562634
40.
Arifin
,
D.
,
Aston
,
V. J.
,
Liang
,
X.
,
McDaniel
,
A.
, and
Weimer
,
A. W.
,
2012
, “
CoFe2O4 on a Porous Al2O3 Nanostructure for Solar Thermochemical CO2 Splitting
,”
Energy Environ. Sci.
, 5, pp. 9438–9443.10.1039/c2ee22090c
41.
Häring
,
H.-W.
, and
Ahner
,
C.
,
2008
,
Industrial Gas Processing
,
Wiley-VCH
,
New York
.
42.
Zinkevich
,
M.
,
Djurovic
,
D.
, and
Aldinger
,
F.
,
2006
, “
Thermodynamic Modelling of the Cerium-Oxygen System
,”
Solid State Ionics
,
177
(
11–12
), pp.
989
1001
.10.1016/j.ssi.2006.02.044
43.
Zhou
,
G.
,
Sarah
,
P. R.
,
kim
,
T.
,
Fornasiero
,
P.
, and
Gorte
,
R. J.
,
2007
, “
Oxidation Entropies and Enthalpies of Ceria-Zirconia Solid Solutions
,”
Catal. Today
,
123
(
1–4
), pp.
86
93
.10.1016/j.cattod.2007.01.013
44.
Stine
,
W. B.
, and
Geyer
,
M.
,
2001
, Power From the Sun, http://www.powerfromthesun.net/book.html
45.
Schell
,
S.
,
2011
, “
Design and Evaluation of Esolar's Heliostat Fields
,”
Sol. Energy
,
85
(
4
), pp.
614
619
.10.1016/j.solener.2010.01.008
You do not currently have access to this content.