The aim of this work is to determine the empirical transfer function coefficients (TFCs) for the case of a hollow tile with two air cells deep in the vertical direction. We start with the prediction of combined heat transfer by conduction, natural convection, and radiation by using a detailed numerical simulation when the system is submitted to the realistic time varying temperatures. Then, the results of the simulation (the time-varying heat fluxes at the hollow tile surfaces) are used to obtain empirical TFCs by using an identification method. The dynamic responses of the hollow tile that are predicted using both the TFCs and the simulation program are compared for thermal excitations that differ from those used to derive the coefficients. The results show a good harmony between the two procedures’ predictions. In addition, other different comparisons in terms of the overall thermal conductance coefficients are presented and discussed.

References

1.
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
1999
, “
Simulation Numérique des Transferts Thermiques Couplés à Travers les Parois Alvéolaires des Bâtiments
,”
Int. J. Therm. Sci.
,
38
(8), pp.
719
730
.10.1016/S1290-0729(99)80065-9
2.
Ait-Taleb
,
T.
,
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
2008
, “
Numerical Simulation of Coupled Heat Transfers by Conduction, Natural Convection and Radiation in Hollow Structures Heated From Below or Above
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
378
387
.10.1016/j.ijthermalsci.2007.01.035
3.
El Ayachi
,
R.
,
Raji
,
A.
,
Naïmi
,
M.
,
Elharfi
,
H.
, and
Hasnaoui
,
M.
,
2013
, “
Effect of Sinusoidal Heating on Natural Convection Coupled to Thermal Radiation in a Square Cavity Subjected to Cross Temperature Gradients
,”
J. Electron. Cool. Therm. Control
,
3
(
1
), pp.
7
21
.10.4236/jectc.2013.31002
4.
Del Coz Díaz
,
J. J.
,
García Nieto
,
P. J.
,
Suárez Sierra
,
J. L.
, and
Betegón Biempica
,
C.
,
2008
, “
Nonlinear Thermal Optimization of External Light Concrete Multi-Holed Brick Walls by the Finite Element Method
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1530
1541
.10.1016/j.ijheatmasstransfer.2007.07.029
5.
Del Coz Díaz
,
J. J.
,
García Nieto
,
P. J.
,
Suárez Sierra
,
J. L.
, and
Peñuelas Sánchez
,
I.
,
2008
, “
Non-Linear Thermal Optimization and Design Improvement of a New Internal Light Concrete Multi-Holed Brick Walls by FEM
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1090
1100
.10.1016/j.applthermaleng.2007.06.023
6.
Del Coz Díaz
,
J. J.
,
García Nieto
,
P. J
,
Dománguez Hernández
,
J.
, and
Álvarez Rabanal
,
F. P.
,
2010
, “
A FEM Comparative Analysis of the Thermal Efficiency Among Floors Made up of Clay, Concrete and Lightweight Concrete Hollow Blocks
,”
Appl. Therm. Eng.
,
30
(
17–18
), pp.
2822
2826
.10.1016/j.applthermaleng.2010.07.024
7.
Burch
,
D. M.
,
Licitra
,
B. A.
, and
Zarr
,
E. R.
,
1990
, “
A Comparison of Two Test Methods for Determining Transfer Function Coefficients for Wall Using a Calibrated Hot Box
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
35
42
.10.1115/1.2910361
8.
Chen
,
Y.
,
Zhou
,
J.
, and
Spitler
,
J. D.
,
2006
, “
Verification for Transient Heat Conduction Calculation of Multilayer Building Constructions
,”
Energy Build.
,
38
(
4
), pp.
340
348
.10.1016/j.enbuild.2005.07.003
9.
Chávez
,
C. Y.
, and
Wilson
,
R.
,
2008
, “
A Second Degree Approximation for the Calculation of the Transfer Function Coefficients for Heat Conduction Through Walls
,”
Energy Build.
,
40
(
4
), pp.
549
555
.10.1016/j.enbuild.2007.04.012
10.
Abdelbaki
,
A.
,
1993
, “
Contribution à la Modélisation des Transferts Thermiques à Travers le Plancher d’un Habitat sur Terre-Plein
,” Thèse de D.E.S.,
Faculté des Sciences Semlalia
,
Marrakech, Morocco
.
11.
El Biyaâli
,
A.
,
Roux
,
J. J.
,
Yezou
,
R.
, and
Ayaichia
,
H.
,
1994
, “
Application de la Réduction de Modèle aux Singularités Thermiques de Bâtiments
,”
Rev. Gén. Therm.
,
33
(
394
), pp.
571
579
.
12.
Seem
,
J. E.
,
1987
, “
Modeling in Heat Transfer in Buildings
,” Ph.D. thesis,
University of Wisconsin
,
Madison, WI
.
13.
Abdelbaki
,
A.
,
Zrikem
,
Z.
, and
Haghighat
,
F.
,
2001
, “
Identification of Empirical Transfer Function Coefficients for a Hollow Tile Based on Detailed Models of Coupled Heat Transfers
,”
Build. Environ.
,
36
(
2
), pp.
139
148
.10.1016/S0360-1323(99)00061-X
14.
Ait-Taleb
,
T.
,
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
2008
, “
Transfer Function Coefficients for Time Varying Coupled Heat Transfers. Application to Hollow Concrete Brick
,”
Build. Simul. J.
,
1
(
4
), pp.
303
310
.10.1007/s12273-008-8131-y
15.
Ait-taleb
,
T.
,
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
2008
, “
Coupled Heat Transfers Trough Building Roofs Formed by Hollow Concrete Blocks
,”
Int. Sci. J. Altern. Energy Ecol.
,
6
, pp.
30
34
.
16.
Siegel
,
R.
, and
Howell
,
J. R.
,
1981
,
Thermal Radiation Heat Transfer
, 2nd ed.,
McGraw-Hill
,
New York
.
17.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
18.
Ait-taleb
,
T.
,
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
2014
, “
Simulation of Coupled Heat Transfers in a Hollow Tile With Two Vertical and Three Horizontal Uniform Rectangular Cavities Heated From Below or Above
,”
Energy Build.
,
84
, pp.
628
632
.10.1016/j.enbuild.2014.09.010
You do not currently have access to this content.