Flange height is between the geometric features that contribute efficiently to improve the diffuser aerodynamic performances. Results obtained from wind tunnel experiments, particle image velocimetry (PIV) measurements, and numerical simulations reveal that at the diffuser inlet section, the wind velocity increases as the flange height increases. Nevertheless, there is an optimal ratio (flange height/inlet section diameter, Hopt/Da ≈ 0.15) beyond it, the flange height effect on the velocity increase diminishes. This behavior can be explained by both the positions of the two contra-rotating vortices generated downstream of the diffuser and the pressure coefficient at their centers. Indeed, it was found that, as the flange height increases, the two vortices move away from each other in the flow direction and since the flange height exceeds (Hopt/Da), they became too distant from each other and from the flange. While the pressure coefficients at the vortices' centers increase with (H/Da), attain a maximum when (Hopt/Da) is reached, and then decrease. This suggests that the wind velocity increase depends on the pressure coefficient at the vortices' centers. Therefore, it depends on the vortices' locations which are in turn controlled by the flange height. In practice, this means that the diffuser could be more efficient if equipped with a control system able to hold the vortices too near from the flange.

References

1.
Ragheb
,
M.
,
2014
, “
Wind Energy Converters Concepts
,”
University of Illinois at Urbana-Champaign
, Champaign, IL.
2.
Lilley
,
G. M.
, and
Rainbird
,
W. J. A.
,
1956
, “
Preliminary Report on the Design and Performance of Ducted Windmills
,” College of Aeronautics, Cranfield, UK, CoA Reports,
Technical Report No. 102
, p.
73
.
3.
Oman
,
R. A.
, and
Foreman
,
K. M.
,
1973
, “
Advantages of the Diffuser Augmented Wind Turbine
,”
Wind Energy Conversion Systems: Workshop Proceedings
, Washington, DC, pp.
103
106
.
4.
Igra
,
O.
,
1977
, “
Compact Shrouds for Wind Turbines
,”
Energy Convers.
,
16
(
4
), pp.
149
157
.
5.
Gilbert
,
B. L.
,
Oman
,
R. A.
, and
Foreman
,
K. M.
,
1978
, “
Fluid Dynamics of Diffuser-Augmented Wind Turbines
,”
J. Energy
,
2
(
6
), pp.
368
374
.
6.
Ohya
,
Y.
, and
Karasudani
,
T. A.
,
2010
, “
Shrouded Wind Turbine Generating High Output Power With Wind-Lens Technology
,”
J. Energies
,
3
(
4
), pp.
634
649
.
7.
Hansen
,
M. O. L.
,
Sorensen
,
N. N.
, and
Flay
,
R. G. J.
,
2000
, “
Effect of Placing a Diffuser Around a Wind Turbine
,”
J. Wind Energy
,
3
(
4
), pp.
207
213
.
8.
Van Bussel
,
G. J. W.
,
2007
, “
The Science of Making More Torque From Wind: Diffuser Experiments and Theory Revisited
,”
J. Phys.: Conf. Ser.
,
75
, p.
012010
.
9.
Abe
,
K.
, and
Ohya
,
Y.
,
2004
, “
An Investigation of Flow Fields Around Flanged Diffusers Using CFD
,”
J. Wind Eng. Ind. Aerodyn.
,
92
, pp.
315
330
.
10.
Abe
,
K.
,
Nishida
,
M.
,
Sakurai
,
A.
,
Ohya
,
Y.
,
Kihara
,
H.
,
Wada
,
E.
, and
Sato
,
K.
,
2005
, “
Experimental and Numerical Investigations of Flow Fields Behind a Small Wind Turbine With a Flanged Diffuser
,”
J. Wind Eng. Ind. Aerodyn.
,
93
(
12
), pp.
951
970
.
11.
Phillips
,
D. G.
,
Richards
,
P. J.
, and
Flay
,
R. G. J.
,
2002
, “
CFD Modelling and the Development of the Diffuser Augmented Wind Turbine
,”
Wind Struct.
,
5
, pp.
267
276
.
12.
ten Hoopen
,
P. D. C.
,
2009
, “
An Experimental and Computational Investigation of a Diffuser Augmented Wind Turbine
,” Ph.D. thesis, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands.
13.
Matsushima
,
T.
,
Takagi
,
S.
, and
Muroyama
,
S.
,
2006
, “
Characteristics of a Highly Efficient Propeller Type Small Wind Turbine With a Diffuser
,”
Renewable Energy
,
31
(
9
), pp.
1343
1354
.
14.
Kardous
,
M.
,
Chaker
,
R.
,
Aloui
,
F.
, and
Ben Nasralah
,
S.
,
2013
, “
On the Dependence of an Empty Flanged Diffuser Performance on Flange Height: Numerical Simulations and PIV Visualizations
,”
Renewable Energy
,
56
, pp.
123
128
.
15.
Chaker
,
R.
,
Kardous
,
M.
,
Aloui
,
F.
, and
Ben Nasralah
,
S.
,
2014
, “
Open Angle Effects on the Aerodynamic Performances of a Flanged Diffuser Augmented Wind Turbine (DAWT)
,”
International Journal Conference on Energy and Electrical Engineering
, Vol.
2
, p. 6.
16.
García
,
E.
,
Pizá
,
R.
,
Benavides
,
X.
,
Quiles
,
E.
,
Correcher
,
A.
, and
Morant
,
F.
,
2014
, “
Mechanical Augmentation Channel Design for Turbine Current Generators
,”
Adv. Mech. Eng.
,
6
, p.
650131
.
17.
Kale
,
A.
,
Gunjal
,
Y. R.
,
Jadhav
,
S. P.
, and
Tanksale
,
A. N.
,
2013
, “
CFD Analysis for Optimization of Diffuser for a Micro Wind Turbine
,”
IEEE
International Conference on Energy Efficient Technologies for Sustainability
, Apr. 10–12, pp.
257
260
.
18.
Adeel
,
A.
,
Zaidi
,
M.
, and
Uddin
,
N.
,
2013
, “
Numerical Investigations of Subsonic Flow Through a Convergent-Divergent Duct With Varying Flange Heights at Exit
,”
International Conference on Energy and Sustainability
, NED University of Engineering & Technology, Karachi, Pakistan, pp. 15–19.
19.
Ohya
,
Y.
,
Karasudani
,
T.
,
Sakurai
,
A.
,
Abe
,
K.
, and
Inoue
,
M.
,
2008
, “
Development of a Shrouded Wind Turbine With a Flanged Diffuser
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
5
), pp.
524
539
.
20.
Mansour
,
K.
, and
Meskinkhoda
,
P.
,
2014
, “
Computational Analysis of Flow Fields Around Flanged Diffusers
,”
J. Wind Eng. Ind. Aerodyn.
,
124
, pp.
109
120
.
21.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.
22.
Roth
,
M.
, and
Peikert
,
R.
,
1998
, “
A Higher-Order Method for Finding Vortex Core Lines
,”
IEEE
Visualization
, Oct. 18–23, pp.
143
150
.
23.
Strawn
,
R. C.
,
Kenwright
,
D. N.
, and
Ahmad
,
J.
,
1999
, “
Computer Visualization of Vortex Wake Systems
,”
AIAA J.
,
37
(
4
), pp.
511
512
.
24.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.
25.
Jiang
,
M.
,
Machiraju
,
R.
, and
Thompson
,
D. S.
,
2002
, “
A Novel Approach to Vortex Core Region Detection
,” Joint Eurographics
IEEE TCVG
Symposium on Visualization
, pp.
217
225
.
26.
Pope
,
A.
, and
Harper
,
J. J.
,
1966
,
Low Speed Wind Tunnel Testing
,
Wiley
,
New York
, p.
457
.
27.
ASCE, Aerodynamics Committee
,
1987
, “
Wind Tunnel Model Studies of Buildings and Structures
,”
ASCE Manuals and Reports on Engineering Practice
,
American Society of Civil Engineers
,
New York
, No. 67, p.
228
.
28.
Mehmood
,
N.
,
Liang
,
Z.
, and
Khan
,
J.
,
2012
, “
CFD Study of NACA 0018 for Diffuser Design of Tidal Current Turbines
,”
Res. J. Appl. Sci. Eng. Technol.
,
4
(
21
), pp.
4552
4560
.
You do not currently have access to this content.