Abstract

Thermal transport and flow friction characteristics due to roughness on the absorber plate of solar air heater are evaluated by applying three-dimensional finite volume based code. Renormalization group (RNG) k–ɛ model is employed to capture the turbulent nature of the flow. The effect of equilateral prism-shaped rib roughness geometrical parameters in terms of relative roughness height (e/D) and relative roughness pitch (p/e) on heat transfer and flow friction is analyzed. Further, the effect of flow parameter, Re in the range of 4000–18,000 is also explored. Results are elucidated in terms of average Nusselt number, friction factor, turbulent kinetic energy, and eddy dissipation. Results are compared with a smooth absorber plate solar air heater. Thermo-hydraulic performance of the roughened solar air heater is analyzed. Noteworthy augmentation in heat transport is obtained. The thermal enhancement factor is calculated for optimal performance and found to vary from 1.7 to 3.5. However, friction factor and pressure loss for roughened plate is significantly higher than its smooth counterpart. The pressure drop across the test section increases with the rise in roughness height due to flow obstruction. A minimum value of the friction factor enhancement ratio worth 2.13 is obtained. Enhancement in thermal transport and pressure losses are combined by introducing a thermo-hydraulic performance factor (THHP). For the range of parameters investigated, the optimum value of the thermo-hydraulic performance factor is found to be 3.41. Correlations for average Nusselt number and friction factor are offered at the end.

References

1.
Kumar
,
S.
, and
Saini
,
R. P.
,
2009
, “
CFD Based Performance Analysis of a Solar Air Heater Duct Provided With Artificial Roughness
,”
Renewable Energy
,
34
(
5
), pp.
1285
1291
10.1016/j.renene.2008.09.015.
2.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
A CFD (Computational Fluid Dynamics) Based Heat Transfer and Fluid Flow Analysis of a Solar Air Heater Provided With Circular Transverse Wire Rib Roughness on the Absorber Plate
,”
Energy
,
55
, pp.
1127
1142
10.1016/j.energy.2013.03.066.
3.
Gupta
,
D.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
1993
, “
Heat and Fluid Flow in Rectangular Solar Air Heater Ducts Having Transverse Rib Roughness on Absorber Plate
,”
Sol. Energy
,
51
(
1
), pp.
31
37
10.1016/0038-092X(93)90039-Q.
4.
Saini
,
S. K.
, and
Saini
,
R. P.
,
2008
, “
Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater With Roughened Duct Having Arc-Shaped Wire as Artificial Roughness
,”
Sol. Energy
,
82
(
12
), pp.
1118
1130
.
5.
Karwara
,
R.
, and
Chitoshiya
,
G.
,
2008
, “
Performance Study of Solar Air Heater Having V-Down Discrete Ribs on Absorber Plate
,”
Int. J. Energy
,
55
(
15
), pp.
939
955
.
6.
Layek
,
A.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2007
, “
Second Law Optimization of a Solar Air Heater Having Chamfered Rib Groove Roughness on Absorber Plate
,”
Renewable Energy
,
32
(
12
), pp.
1967
1980
10.1016/j.renene.2006.11.005.
7.
Priyem
,
A.
, and
Chand
,
P.
,
2016
, “
Thermal and Thermo Hydraulic Performance of Wavy Finned Absorber Solar Air Heater
,”
Sol. Energy
,
130
, pp.
250
259
10.1016/j.solener.2016.02.030.
8.
Chouksey
,
V. K.
, and
Sharma
,
S. P.
,
2016
, “
Investigations on Thermal Performance Characteristics of Wire Screen Packed Bed Solar Air Heater
,”
Sol. Energy
,
132
, pp.
591
605
10.1016/j.solener.2016.03.040.
9.
Chabane
,
F.
,
Moummi
,
N.
, and
Benramache
,
S.
,
2014
, “
Experimental Study of Heat Transfer and Thermal Performance With Longitudinal Fins of Solar Air Heater
,”
J. Adv. Res
,
5
(
2
), pp.
183
192
10.1016/j.jare.2013.03.001.
10.
Saha
,
S. N.
, and
Sharma
,
S. P.
,
2016
, “
Analysis of Thermo-Hydraulic Performance of Double Flow V-Corrugated Absorber Solar Air Heater
,”
Int. Energy J.
,
16
(
3
), pp.
131
142
.
11.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Heat Transfer and Friction in Solar Air Heater Duct With W-Shaped Rib Roughness on Absorber Plate
,”
Energy
,
36
(
7
), pp.
4531
4541
10.1016/j.energy.2011.03.054.
12.
Ozgen
,
F.
,
Esen
,
M.
, and
Esen
,
H.
,
2009
, “
Experimental Investigation of Thermal Performance of a Double-Flow Solar Air Heater Having Aluminium Cans
,”
Renewable Energy
,
34
(
11
), pp.
2391
2398
10.1016/j.renene.2009.03.029.
13.
Momin
,
A. M. E.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer and Friction in Solar Air Heater Duct With V-Shaped Rib Roughness on Absorber Plate
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3383
3396
10.1016/S0017-9310(02)00046-7.
14.
Mittal
,
M. K.
, and
Varshney
,
L.
,
2005
, “
Optimal Thermohydraulic Performance of Wire Mesh Packed Solar Air Heater
,”
Sol. Energy
,
80
(
9
), pp.
1112
1120
10.1016/j.solener.2005.10.004.
15.
Saini
,
R. P.
, and
Verma
,
J.
,
2008
, “
Heat Transfer and Friction Correlation for a Duct Having Dimple Shape Artificial Roughness for Solar Air Heater
,”
Energy
,
33
(
8
), pp.
1277
1287
10.1016/j.energy.2008.02.017.
16.
Karmare
,
S. V.
, and
Tikekar
,
A. N.
,
2007
, “
Heat Transfer and Friction Factor Correlation for Artificially Roughened Duct With Metal Grit Ribs
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4342
4351
10.1016/j.ijheatmasstransfer.2007.01.065.
17.
Kumar
,
V.
,
2019
, “
Nusselt Number and Friction Factor Correlations of Three Sides Concave Dimple Roughened Solar Air Heater
,”
Renewable Energy
,
135
, pp.
355
377
10.1016/j.renene.2018.12.002.
18.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A CFD (Computational Fluid Dynamics) Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned Rib Roughness on the Absorber Plate
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1016
1039
10.1016/j.ijheatmasstransfer.2013.11.074.
19.
Aharwal
,
K. R.
,
Gandhi
,
B. K.
, and
Saini
,
J. S.
,
2008
, “
Experimental Investigation on Heat Transfer Enhancement Due to a Gap in an Inclined Continuous Rib Arrangement in a Rectangular Duct of Solar Air Heater
,”
Renewable Energy
,
33
(
4
), pp.
585
596
10.1016/j.renene.2007.03.023.
20.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surface to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
10.1016/0017-9310(72)90095-6.
21.
Verma
,
S. K.
, and
Prasad
,
B. N.
,
2000
, “
Investigation for Optimal Thermo-Hydraulic Performance of Artificially Roughened Solar Air Heaters
,”
Renewable Energy
,
20
(
21
), pp.
19
36
10.1016/S0960-1481(99)00081-6.
You do not currently have access to this content.