Abstract

Previously reported studies have shown that the volumetric receivers have lower radiative and convective losses, leading to higher efficiency. However, the conventional volumetric receivers are difficult to use along with the thermal storage systems, owing to the use of air as the heat transfer fluid. Molten salt, having high heat capacity, emerges as a suitable candidate to be employed as the heat transfer fluid and for storing thermal energy in the storage devices. It is challenging to use the molten salt in the conventional volumetric receiver configuration; therefore, a novel design called Liquid Volumetric Plated Cavity Receiver is proposed, where the solar salt is used as heat transfer fluid. It consists of a parallel arrangement of hollow plates in an open cavity. Solar radiation concentrated by the heliostat field is absorbed on the outer surface of the hollow plates. The heat is then taken away by the molten salt flowing inside the hollow plates. The plates are arranged such that the molten salt gets heated up within the volume of the enclosure, effectively mimicking the heating performance of the volumetric receivers. Using an analytical model for heat losses, it is observed that the losses are very sensitive to the aspect ratio of the aperture and depth of the receiver. The effects of receiver inclination, plate orientations, radiation incident at the aperture, and surface emissivity have been investigated as well. The results show that a Liquid Volumetric Plated Cavity Receiver increases the efficiency (by ∼3%) as compared with that of the simple cubic receiver.

References

References
1.
Desai
,
N. B.
,
Bandhopadhyay
,
S.
,
Nayak
,
J. K.
,
Banerjee
,
R.
, and
Kedare
,
S. B.
,
2014
, “
Simulation of 1 MWe Solar Thermal Power Plant
,”
Energy Procedia
,
57
, pp.
507
516
. 10.1016/j.egypro.2014.10.204
2.
Pacheo
,
J. E.
,
2002
, “
Final Test and Evaluation Results From the Solar Two Projects
,”
Sandia National Laboratories
,
Albuquerque, NM, Report No. SAND2002-120
.
3.
Lata
,
J. M.
,
Rodríguez
,
M. Á
, and
lvares de Lara
,
M.
,
2008
, “
High Flux Central Receivers of Molten Salts for the New Generation of Commercial Standalone Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021002
. 10.1115/1.2884576
4.
Gould
,
W. R.
, Jr
,
2011
, “
Solar Reserve’s 565 MW Molten Salt Power Towers
,”
Proceedings of the 17th SolarPACES Conference
,
Granada Spain
,
Sept. 20–23
.
5.
Garbrecht
,
O.
,
Sibai
,
F.
,
Kneer
,
R.
, and
Wieghardt
,
K.
,
2013
, “
CFD-Simulation of a New Receiver Design for a Molten Salt Solar Power Tower
,”
Sol. Energy
,
90
, pp.
94
106
. 10.1016/j.solener.2012.12.007
6.
Bergan
,
N. E.
,
1986
, “
Testing of the Molten Salt Electric Experiment Solar Central Receiver in an External Configuration
,”
Sandia National Laboratories
,
Albuquerque, NM, Report No. SAND86-8010
.
7.
Antonio
,
L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
. 10.1016/j.solener.2011.02.002
8.
Turner
,
P. J.
, and
Sansom
,
C.
,
2015
, “
A Tubed Volumetric Cavity Receiver Concept for High-Efficiency Low Cost Modular Molten Salt Towers
,”
Sol. PACES Energy Procedia
,
69
, pp.
553
562
. 10.1016/j.egypro.2015.03.064
9.
Ortega
,
J. I.
,
Burgaleta
,
J. I.
, and
Felix
,
M. T.
,
2008
, “
Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
024501
. 10.1115/1.2807210
10.
Clifford
,
K. H.
, and
Brain
,
D. I.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renew. Sustain. Energy Rev.
,
29
, pp.
835
846
. 10.1016/j.rser.2013.08.099
11.
Harris
,
J. A.
, and
Lenz
,
T. G.
,
1985
, “
Thermal Performance of Solar Concentrators/Cavity Receiver Systems
,”
Sol. Energy
,
34
(
2
), pp.
135
142
. 10.1016/0038-092X(85)90170-7
12.
Yu
,
Q.
,
Wang
,
Z.
, and
Xu
,
E.
,
2012
, “
Simulation and Analysis of the Central Cavity Receiver’s Performance of Solar Thermal Power Tower Plant
,”
Sol. Energy
,
86
(
1
), pp.
164
174
. 10.1016/j.solener.2011.09.022
13.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
. 10.1115/1.4001146
14.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
. 10.1115/1.1467921
15.
Serrano-López
,
R.
,
Fradera
,
J.
, and
Cuesta-López
,
S.
,
2013
, “
Molten Salts Database for Energy Applications
,”
Chem. Eng. Process.: Process Intensif.
,
73
, pp.
87
102
. 10.1016/j.cep.2013.07.008
16.
Clausing
,
A. M.
,
1981
, “
An Analysis of Convective Losses From Cavity Solar Central Receivers
,”
Sol. Energy
,
27
(
4
), pp.
295
300
. 10.1016/0038-092X(81)90062-1
17.
Fang
,
J. B.
,
Tu
,
N.
, and
Wei
,
J. J.
,
2013
, “
Numerical Investigation of Start-up Performance of a Solar Cavity Receiver
,”
Renew. Energy
,
53
, pp.
35
42
. 10.1016/j.renene.2012.10.053
18.
Prakash
,
M.
,
Kedare
,
S. B.
, and
Nayak
,
J. K.
,
2009
, “
Investigations on Heat Losses From a Solar Cavity Receiver
,”
Sol. Energy
,
83
(
2
), pp.
157
170
. 10.1016/j.solener.2008.07.011
19.
Sendhil
,
K. N.
, and
Reddy
,
K. S.
,
2007
, “
Numerical Investigation of Natural Convection Heat Loss in Modified Cavity Receiver for Fuzzy Focal Solar Dish Concentrator
,”
Sol. Energy
,
81
(
7
), pp.
846
855
. 10.1016/j.solener.2006.11.008
20.
Siebers
,
D. L.
, and
Kraabel
,
J. S.
,
1984
, “
Estimating Convective Losses From a Solar Central Receiver
,”
Sandia Report
,
Albuquerque, NM, Report No. SAND84-8717
.
21.
Singh
,
O.
,
Singh
,
S.
, and
Kedare
,
S. B.
,
2016
, “
Effect of Thermal Radiation on Accuracy of Restricted Domain Approach in a Square Open Cavity
,”
Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
. vol.
8
,
Heat Transfer and Thermal Engineering
,
V008T10A053. ASME
.
22.
Vignarooban
,
K.
,
Xinhai
,
X.
,
Arvay
,
A.
,
Hsu
,
K.
, and
Kannan
,
A. M.
,
2015
, “
Heat Transfer Fluids for Concentrating Solar Power Systems—A Review
,”
Appl. Energy
,
146
, pp.
383
396
. 10.1016/j.apenergy.2015.01.125
23.
Ahlbrink
,
N.
,
Andersson
,
J.
,
Diehl
,
M.
, and
Pitz-Paal
,
R.
,
2013
, “
Optimization of the Mass Flow Rate Distribution of an Open Volumetric Air Receiver
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041003
. 10.1115/1.4024245
24.
Li
,
X.
,
Kong
,
W.
,
Wang
,
Z.
,
Chang
,
C.
, and
Bai
,
F.
,
2010
, “
Thermal Modal and Thermodynamic Performance of Molten Salt Cavity Receiver
,”
Renew. Energy
,
35
(
5
), pp.
981
988
. 10.1016/j.renene.2009.11.017
25.
Jilte
,
R. D.
,
Kedare
,
S. B.
, and
Nayak
,
J. K.
,
2013
, “
Natural Convection and Radiation Heat Loss From Open Cavities of Different Shapes and Sizes Used in Dish Concentrator
,”
Mech. Eng. Res.
,
3
(
1
), pp.
25
43
. 10.5539/mer.v3n1p25
You do not currently have access to this content.