Abstract

A novel method for pairing surface irradiation and volumetric absorption from Monte Carlo ray tracing to computational heat transfer models is presented. The method is well-suited to directionally and spatially complex concentrated radiative inputs (e.g., solar receivers and reactors). The method employs a generalized algorithm for directly mapping absorbed rays from a Monte Carlo ray tracing model to boundary or volumetric source terms in the computational mesh. The algorithm is compatible with unstructured, two and three-dimensional meshes with varying element shapes. Four case studies were performed on a directly irradiated, windowed solar thermochemical reactor model to validate the method. The method was shown to conserve energy and preserve spatial variation when mapping rays from a Monte Carlo ray tracing model to a computational heat transfer model in ansys fluent.

References

References
1.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Washington, DC
.
2.
Anderson
,
D.
,
Tannehill
,
J.
, and
Pletcher
,
R.
,
Computational Fluid Mechanics and Heat Transfer, Series in Computational Methods in Mechanics and Thermal Sciences
, 2nd ed.,
Taylor and Francis
,
London
.
3.
2013
, “ANSYS Fluent,” ANSYS, Inc., Canonsburg, PA.
4.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
Oxford, UK
.
5.
ANSYS
,
2017
, “ANSYS Fluent,” ANSYS, Inc., Canonsburg, PA.
6.
Mecit
,
A. M.
, and
Miller
,
F.
,
2014
A Comparison Between the Monte Carlo Ray Trace and the FLUENT Discrete Ordinates Methods for Treating Solar Input to a Particle Receiver
,”
ASME 2014 8th International Conference on Energy Sustainability Collocated With the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies
,
Boston, MA
,
June 30–July 2
, p.
V001T002A013
.
7.
Craig
,
K. J.
,
Moghimi
,
M. A.
,
Rungasamy
,
J.
,
Marsberg
,
J.
, and
Meyer
,
P.
,
2016
, “
Finite-Volume Ray Tracing Using Computational Fluid Dynamics in Linear Focus CSP Applications
,”
Appl. Energy
,
183
, pp.
241
256
. 10.1016/j.apenergy.2016.08.154
8.
Wang
,
F.
,
Tan
,
J.
,
Yong
,
S.
,
Tan
,
H.
, and
Chu
,
S.
,
2014
, “
Thermal Performance Analyses of Porous Media Solar Receiver With Different Irradiative Transfer Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
7
16
. 10.1016/j.ijheatmasstransfer.2014.06.035
9.
Khalsa
,
S. S. S.
, and
Ho
,
C. K.
,
2011
, “
Radiation Boundary Conditions for Computational Fluid Dynamics Models of High-Temperature Cavity Receivers
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031020
. 10.1016/10.1115/1.4004274
10.
Bush
,
H. E.
,
Schlichting
,
K.-P.
,
Gill
,
R. J.
,
Jeter
,
S. M.
, and
Loutzenhiser
,
P. G.
,
2017
, “
Design and Characterization of a Novel Upward Flow Reactor for the Study of High-Temperature Thermal Reduction for Solar-Driven Processes
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051004
. 10.1115/1.4037191
11.
Schrader
,
A. J.
,
De Dominicis
,
G.
,
Schieber
,
G. L.
, and
Loutzenhiser
,
P. G.
,
2017
, “
Solar Electricity via an Air Brayton Cycle With an Integrated Two-Step Thermochemical Cycle for Heat Storage Based on Co3O4/CoO Redox Reactions III: Solar Thermochemical Reactor Design and Modeling
,”
Sol. Energy
,
150
, pp.
584
595
. 10.1016/j.solener.2017.05.003
12.
Qiu
,
Y.
,
He
,
Y.-L.
,
Wu
,
M.
, and
Zheng
,
Z.-J.
,
2016
, “
A Comprehensive Model for Optical and Thermal Characterization of a Linear Fresnel Solar Reflector With a Trapezoidal Cavity Receiver
,”
Renew. Energy
,
97
, pp.
129
144
. 10.1016/j.renene.2016.05.065
13.
Qiu
,
Y.
,
He
,
Y.-L.
,
Cheng
,
Z.-D.
, and
Wang
,
K.
,
2015
, “
Study on Optical and Thermal Performance of a Linear Fresnel Solar Reflector Using Molten Salt as HTF With MCRT and FVM Methods
,”
Appl. Energy
,
146
, pp.
162
173
. 10.1016/j.apenergy.2015.01.135
14.
He
,
Y.-L.
,
Xiao
,
J.
,
Cheng
,
Z.-D.
, and
Tao
,
Y.-B.
,
2010
, “
A MCRT and FVM Coupled Simulation Method for Energy Conversion Process in Parabolic Trough Solar Collector
,”
Renew. Energy
,
36
(
3
), pp.
976
985
. 10.1016/j.renene.2010.07.017
15.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031004
. 10.1115/1.4023357
16.
Koepf
,
E.
,
Advani
,
S. G.
,
Steinfeld
,
A.
, and
Prasad
,
A. K.
,
2012
, “
A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16871
16887
. 10.1016/j.ijhydene.2012.08.086
17.
Alonso
,
E.
, and
Romero
,
M.
,
2015
, “
A Directly Irradiated Solar Reactor for Kinetic Analysis of Non-Volatile Metal Oxides Reductions
,”
Int. J. Hydrogen Energy
,
39
(
9
), pp.
1217
1228
. 10.1002/er.3320
18.
Schrader
,
A. J.
,
Bush
,
H. E.
,
Ranjan
,
D.
, and
Loutzenhiser
,
P. G.
,
2020
, “
Aluminum-Doped Calcium Manganite Particles for Solar Thermochemical Energy Storage: Reactor Design, Particle Characterization, and Heat and Mass Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
152
, p.
119461
. 10.1016/j.ijheatmasstransfer.2020.119461
19.
Schrader
,
A. J.
,
Schieber
,
G. L.
,
Ambrosini
,
A.
, and
Loutzenhiser
,
P. G.
,
2020
, “
Experimental Demonstration of a 5 KWth Granular-Flow Reactor for Solar Thermochemical Energy Storage With Aluminum-Doped Calcium Manganite Particles
,”
Appl. Therm. Eng.
,
173
, p.
115257
. 10.1016/j.applthermaleng.2020.115257
20.
Gill
,
R.
,
Bush
,
H. E.
,
Haueter
,
P.
, and
Loutzenhiser
,
P.
,
2015
, “
Characterization of a 6kW High-Flux Solar Simulator With an Array of Xenon Arc Lamps Capable of Concentrations of Nearly 5000 Suns
,”
Rev. Sci. Instrum.
,
86
(
12
), p.
8
. 10.1063/1.4936976
21.
Bush
,
H. E.
,
2019
, “
Development and Characterization of Novel Reduction-Oxidation Active Materials for Two-Step Solar Thermochemical Cycles
,”
Ph.D. Dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.
22.
Dai
,
G.-L.
,
Xia
,
X.-L.
, and
Hou
,
G.-F.
,
2014
, “
Transmission Performances of Solar Windows Exposed to Concentrated Sunlight
,”
Sol. Energy
,
103
, pp.
125
133
. 10.1016/j.solener.2014.01.036
23.
Yong
,
S.
,
Fu-Qiang
,
W.
,
Xin-Lin
,
X.
,
He-Ping
,
T.
, and
Ying-Chun
,
L.
,
2011
, “
Radiative Properties of a Solar Cavity Receiver/Reactor With Quartz Window
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12148
12158
. 10.1016/j.ijhydene.2011.07.013
24.
Mecit
,
A. M.
, and
Miller
,
F.
, “
Optical Analysis of a Window for Solar Receivers Using the Monte Carlo Ray Trace Method
,”
Proceedings of the ASME 2013 7th International Conference on Energy Sustainability Collocated With the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers
,
Minneapolis, MN
,
July 14–19
, p.
V001T011A003
.
25.
Müller
,
R.
, and
Steinfeld
,
A.
,
2007
, “
Band-Approximated Radiative Heat Transfer Analysis of a Solar Chemical Reactor for the Thermal Dissociation of Zinc Oxide
,”
Sol. Energy
,
81
(
10
), pp.
1285
1294
. 10.1016/j.solener.2006.12.006
26.
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Andreozzi
,
A.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2015
, “
Monte Carlo Determination of Radiative Properties of Metal Foams: Comparison Between Idealized and Real Cell Structures
,”
Int. J. Therm. Sci.
,
87
, pp.
94
102
. 10.1016/j.ijthermalsci.2014.08.006
27.
Wei
,
G.
,
Huang
,
P.
,
Xu
,
C.
,
Chen
,
L.
,
Ju
,
X.
, and
Du
,
X.
,
2017
, “
Experimental Study on the Radiative Properties of Open-Cell Porous Ceramics
,”
Sol. Energy
,
149
, pp.
13
19
. 10.1016/j.solener.2017.04.002
28.
Cui
,
F. Q.
,
He
,
Y. L.
,
Cheng
,
Z. D.
,
Li
,
D.
, and
Tao
,
Y. B.
,
2012
, “
Numerical Simulations of the Solar Transmission Process for a Pressurized Volumetric Receiver
,”
Energy
,
46
(
1
), pp.
618
628
. 10.1016/j.energy.2012.07.044
29.
Li
,
Y.
,
Xia
,
X.-L.
,
Ai
,
Q.
,
Sun
,
C.
, and
Tan
,
H.-P.
,
2018
, “
Pore-Level Determination of Spectral Reflection Behaviors of High-Porosity Metal Foam Sheets
,”
Infrared Phys. Technol.
,
89
, pp.
77
87
. 10.1016/j.infrared.2017.12.016
30.
Akolkar
,
A.
, and
Petrasch
,
J.
,
2011
, “
Tomography Based Pore-Level Optimization of Radiative Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
54
(
23
), pp.
4775
4783
. 10.1016/j.ijheatmasstransfer.2011.06.017
31.
Marti
,
J.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2014
, “
Combined Experimental-Numerical Approach to Determine Radiation Properties of Particle Suspensions
,”
ASME J. Heat Transfer
,
136
(
9
), p.
092701
. 10.1115/1.4027768
32.
Marti
,
J.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2014
, “
Experimental Determination of the Radiative Properties of Particle Suspensions for High-Temperature Solar Receiver Applications
,”
Heat Transfer Eng.
,
35
(
3
), pp.
272
280
. 10.1080/01457632.2013.825173
33.
Tien
,
C. L.
,
1988
, “
Thermal Radiation in Packed and Fluidized Beds
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1230
1242
. 10.1115/1.3250623
You do not currently have access to this content.