Abstract

The present work is focused on the numerical study of a solar-powered Stirling engine, with the particularity that the solar radiation is injected through a transparent top cover. Thus, the working fluid absorbs the heat across a porous layer of a steel woven wire screen placed alongside the inner side of the transparent wall. The engine output net power and efficiency are studied as a function of the porosity, engine speed, temperature of the expansion chamber, and wire diameter of the screen. It is found that the engine efficiency remains practically constant for porosity values over 0.7, but there is a relevant increase of the engine output net power compared to the same working conditions without the absorbing layer. For a given porosity value, the most significant increase of net power due to introducing the porous layer was reached when doubling the engine speed resulting in an increment close to 40%.

References

References
1.
Wang
,
Z.
,
Lin
,
L.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liu
,
L.
, and
Xu
,
Y.
,
2017
, “
Scenario Dependence of Future Changes in Climate Extremes Under 1.5 c and 2 c Global Warming
,”
Sci. Rep.
,
7
(
1
), p.
46432
. 10.1038/srep46432
2.
Khosravi
,
A.
,
Syri
,
S.
,
Pabon
,
J. J.
,
Sandoval
,
O. R.
,
Caetano
,
B. C.
, and
Barrientos
,
M. H.
,
2019
, “
Energy Modeling of a Solar Dish/Stirling by Artificial Intelligence Approach
,”
Energy Convers. Manage.
,
199
, p.
112021
. 10.1016/j.enconman.2019.112021
3.
Ruelas
,
J.
,
Velázquez
,
N.
, and
Cerezo
,
J.
,
2013
, “
A Mathematical Model to Develop a Scheffler-Type Solar Concentrator Coupled With a Stirling Engine
,”
Appl. Energy
,
101
, pp.
253
260
. 10.1016/j.apenergy.2012.05.040
4.
Aksoy
,
F.
,
Karabulut
,
H.
,
Çınar
,
C.
,
Solmaz
,
H.
,
Özgören
,
Y. Ö.
, and
Uyumaz
,
A.
,
2015
, “
Thermal Performance of a Stirling Engine Powered by a Solar Simulator
,”
Appl. Therm. Eng.
,
86
, pp.
161
167
. 10.1016/j.applthermaleng.2015.04.047
5.
Barreto
,
G.
, and
Canhoto
,
P.
,
2017
, “
Modelling of a Stirling Engine With Parabolic Dish for Thermal to Electric Conversion of Solar Energy
,”
Energy Convers. Manage.
,
132
, pp.
119
135
. 10.1016/j.enconman.2016.11.011
6.
Zhu
,
S.
,
Yu
,
G.
,
Ma
,
Y.
,
Cheng
,
Y.
,
Wang
,
Y.
,
Yu
,
S.
,
Wu
,
Z.
,
Dai
,
W.
, and
Luo
,
E.
,
2019
, “
A Free-Piston Stirling Generator Integrated With a Parabolic Trough Collector for Thermal-to-Electric Conversion of Solar Energy
,”
Appl. Energy
,
242
, pp.
1248
1258
. 10.1016/j.apenergy.2019.03.169
7.
Hachem
,
H.
,
Gheith
,
R.
,
Aloui
,
F.
, and
Nasrallah
,
S. B.
,
2018
, “
Technological Challenges and Optimization Efforts of the Stirling Machine: A Review
,”
Energy Convers. Manage.
,
171
, pp.
1365
1387
. 10.1016/j.enconman.2018.06.042
8.
Wu
,
C.
,
1995
, “
Maximum Obtainable Specific Cooling Load of a Refrigerator
,”
Energy Convers. Manage.
,
36
(
1
), pp.
7
10
. 10.1016/0196-8904(94)00035-X
9.
de Boer
,
P. C. T.
,
2003
, “
Maximum Attainable Performance of Stirling Engines and Refrigerators
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
911
915
. 10.1115/1.1597618
10.
Langdon-Arms
,
S.
,
Gschwendtner
,
M.
, and
Neumaier
,
M.
,
2018
, “
A Novel Solar-Powered Liquid Piston Stirling Refrigerator
,”
Appl. Energy
,
229
, pp.
603
613
. 10.1016/j.apenergy.2018.08.040
11.
Tan
,
J.
, and
Dang
,
H.
,
2015
, “
An Electrical Circuit Analogy Model for Analyses and Optimizations of the Stirling-Type Pulse Tube Cryocooler
,”
Cryogenics
,
71
, pp.
18
29
. 10.1016/j.cryogenics.2015.05.004
12.
Guo
,
D.
,
Gao
,
J.
,
McGaughey
,
A. J. H.
,
Fedder
,
G. K.
,
Moran
,
M.
, and
Yao
,
S.-C.
,
2013
, “
Design and Evaluation of a MEMS-Based Stirling Microcooler
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111003
. 10.1115/1.4024596
13.
Orda
,
E.
, and
Mahkamov
,
K.
,
2004
, “
Development of “Low-Tech” Solar Thermal Water Pumps for Use in Developing Countries
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
768
773
. 10.1115/1.1668015
14.
Der Minassians
,
A.
, and
Sanders
,
S. R.
,
2011
, “
Stirling Engines for Distributed Low-Cost Solar-Thermal-Electric Power Generation.
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011015
. 10.1115/1.4003144
15.
Fan
,
S.
,
Li
,
M.
,
Li
,
S.
,
Zhou
,
T.
,
Hu
,
Y.
, and
Wu
,
S.
,
2017
, “
Thermodynamic Analysis and Optimization of a Stirling Cycle for Lunar Surface Nuclear Power System
,”
Appl. Therm. Eng.
,
111
, pp.
60
67
. 10.1016/j.applthermaleng.2016.08.053
16.
Hussain
,
T.
,
Islam
,
M.
,
Kubo
,
I.
, and
Watanabe
,
T.
,
2016
, “
Study of Heat Transfer Through a Cavity Receiver for a Solar Powered Advanced Stirling Engine Generator
,”
Appl. Therm. Eng.
,
104
, pp.
751
757
. 10.1016/j.applthermaleng.2016.05.108
17.
Castellanos
,
L. S. M.
,
Noguera
,
A. L. G.
,
Caballero
,
G. E. C.
,
De Souza
,
A. L.
,
Cobas
,
V. R. M.
,
Lora
,
E. E. S.
, and
Venturini
,
O. J.
,
2019
, “
Experimental Analysis and Numerical Validation of the Solar Dish/Stirling System Connected to the Electric Grid
,”
Renew. Energy
,
135
, pp.
259
265
. 10.1016/j.renene.2018.11.095
18.
Ramachandran
,
S.
,
Kumar
,
N.
, and
Timmaraju
,
M. V.
,
2020
, “
Thermodynamic Analysis of Solar Low-Temperature Differential Stirling Engine Considering Imperfect Regeneration and Thermal Losses
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051012
. 10.1115/1.4046629
19.
Coventry
,
J.
,
Andraka
,
C.
,
Pye
,
J.
,
Blanco
,
M.
, and
Fisher
,
J.
,
2015
, “
A Review of Sodium Receiver Technologies for Central Receiver Solar Power Plants
,”
Sol. Energy
,
122
, pp.
749
762
. 10.1016/j.solener.2015.09.023
20.
Trayser
,
D. A.
, and
Eibling
,
J. A.
,
1967
, “
A 50-Watt Portable Generator Employing a Solar-Powered Stirling Engine
,”
Sol. Energy
,
11
(
3–4
), pp.
153
159
. 10.1016/0038-092X(67)90023-0
21.
Isshiki
,
N.
,
1989
, “
Stirling Cycle Engine
,”
April 18, US Patent 4,821,516
.
22.
William
,
R. M.
,
1983
, “
Stirling Engine Design Manual
,”
DOE/NASA/3194-1, NASA CR-168088
.
23.
Andersson
,
N.
,
Eriksson
,
L.-E.
, and
Nilsson
,
M.
,
2015
, “
Numerical Simulation of Stirling Engines Using an Unsteady Quasi-One-Dimensional Approach
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051104
. 10.1115/1.4029396
24.
Cheng
,
C.-H.
, and
Yu
,
Y.-J.
,
2010
, “
Numerical Model for Predicting Thermodynamic Cycle and Thermal Efficiency of a Beta-Type Stirling Engine With Rhombic-Drive Mechanism
,”
Renew. Energy
,
35
(
11
), pp.
2590
2601
. 10.1016/j.renene.2010.04.002
25.
Mahkamov
,
K.
,
2006
, “
An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of the Working Process of a Solar Stirling Engine
,”
ASME J. Sol. Energy Eng.
,
128
(
1
), pp.
45
53
. 10.1115/1.2148979
26.
Costa
,
S.
,
Barrutia
,
H.
,
Esnaola
,
J. A.
, and
Tutar
,
M.
,
2013
, “
Numerical Study of the Pressure Drop Phenomena in Wound Woven Wire Matrix of a Stirling Regenerator
,”
Energy Convers. Manage.
,
67
, pp.
57
65
. 10.1016/j.enconman.2012.10.014
27.
Costa
,
S.
,
Barrutia
,
H.
,
Esnaola
,
J. A.
, and
Tutar
,
M.
,
2014
, “
Numerical Study of the Heat Transfer in Wound Woven Wire Matrix of a Stirling Regenerator
,”
Energy Convers. Manage.
,
79
, pp.
255
264
. 10.1016/j.enconman.2013.11.055
28.
Tew
,
R. C.
, and
Ibrahim
,
M. B.
,
2003
, “
Two-Dimensional Compressible Non-acoustic Modeling of Stirling Machine-Type Components
,”
J. Propul. Power
,
19
(
5
), pp.
922
929
. 10.2514/2.6185
29.
Salazar
,
J. L.
, and
Chen
,
W. -L.
,
2014
, “
A Computational Fluid Dynamics Study on the Heat Transfer Characteristics of the Working Cycle of a β-Type Stirling Engine
,”
Energy Convers. Manage.
,
88
, pp.
177
188
. 10.1016/j.enconman.2014.08.040
30.
Chen
,
W.-L.
,
Wong
,
K.-L.
, and
Chang
,
Y.-F.
,
2015
, “
A Numerical Study on the Effects of Moving Regenerator to the Performance of a β-Type Stirling Engine
,”
Int. J. Heat Mass Transfer
,
83
, pp.
499
508
. 10.1016/j.ijheatmasstransfer.2014.12.035
31.
El-Ghafour
,
S.
,
El-Ghandour
,
M.
, and
Mikhael
,
N.
,
2019
, “
Three-Dimensional Computational Fluid Dynamics Simulation of Stirling Engine
,”
Energy Convers. Manage.
,
180
, pp.
533
549
. 10.1016/j.enconman.2018.10.103
32.
Caetano
,
B. C.
,
Lara
,
I. F.
,
Borges
,
M. U.
,
Sandoval
,
O. R.
, and
Valle
,
R. M.
,
2019
, “
A Novel Methodology on Beta-Type Stirling Engine Simulation Using CFD
,”
Energy Convers. Manage.
,
184
, pp.
510
520
. 10.1016/j.enconman.2019.01.075
33.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2011
,
Theory of Machines and Mechanisms
, Vol.
1
,
Oxford University Press
,
New York
.
34.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
35.
Walker
,
G.
, and
Vasishta
,
V.
,
1971
,
Heat-Transfer and Flow-Friction Characteristics of Dense-Mesh Wire-Screen Stirling-Cycle Regenerators
,
K. D.
Timmerhaus
, ed.,
Springer
,
Boston, MA
, pp.
324
332
.
36.
Sodre
,
J. R.
, and
Parise
,
J. A.
,
1997
, “
Friction Factor Determination for Flow Through Finite Wire-Mesh Woven-Screen Matrices
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
847
851
. 10.1115/1.2819507
37.
Costa
,
S.
,
Barreno
,
I.
,
Tutar
,
M.
,
Esnaola
,
J.-A.
, and
Barrutia
,
H.
,
2015
, “
The Thermal Non-equilibrium Porous Media Modelling for CFD Study of Woven Wire Matrix of a Stirling Regenerator
,”
Energy Convers. Manage.
,
89
, pp.
473
483
. 10.1016/j.enconman.2014.10.019
38.
Tanaka
,
M.
,
Yamashita
,
I.
, and
Chisaka
,
F.
,
1990
, “
Flow and Heat Transfer Characteristics of the Stirling Engine Regenerator in an Oscillating Flow
,”
JSME Int. J. Ser. 2 Fluids Eng. Heat Transfer Power Combust. Thermophys. Prop.
,
33
(
2
), pp.
283
289
.
39.
Gedeon
,
D.
, and
Wood
,
J.
,
1996
, “
Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts
,”
NASA Contractor Report 198442
.
You do not currently have access to this content.