Abstract

The blades of a vertical axis wind turbine (VAWT) experience large variations in the angle of attack at low tip-speed ratios and induce blade force oscillation. These unsteady aerodynamic effects must be considered in the VAWT aerodynamic modelling methodology by utilizing a dynamic stall model. The Beddoes–Leishman (B–L) dynamic stall model is a popular method to simulate the unsteady VAWT blade dynamic stall aerodynamics. However, a limitation of the B–L dynamic stall model is the number of the airfoil dependent parameters derived from both steady and unsteady experimental measurements. In this paper, a methodology is described to compute these B–L dynamic stall model airfoil coefficients utilizing a computational fluid dynamics (CFD) model. This method permits the calculation of the blade dynamic stall characteristics over a range of reduced pitch rates by employing a user-defined sliding mesh motion technique. Furthermore, the variation in the blade Reynolds number is accounted for by conducting simulations at the maximum and minimum VAWT envelope operating limits. Aerodynamic blade force experimental measurements are used to compare the predictions from a low-order model with airfoil data extracted CFD and experiments. This approach expands the applicability of the B–L dynamic stall model for large-scale VAWTs.

References

References
1.
Hand
,
B.
, and
Cashman
,
A.
,
2019
, “
A Review on the Historical Development of the Lift-Type Vertical Axis Wind Turbine: From Onshore to Offshore Floating Application
,”
Sustain. Energy Technol. Assess.
,
38
, p.
100646
. 10.1016/j.seta.2020.100646
2.
McCroskey
,
W.
,
1981
, “
The Phenomenon of Dynamic Stall
,”
Technical Report
,
Ames Research Center, National Aeronautics and Space Administration (NASA)
,
Moffett Field, CA
.
3.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamics
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
4.
Spentzos
,
A.
,
Barakos
,
G. N.
,
Badcock
,
K. J.
,
Richards
,
B. E.
,
Wernert
,
P.
,
Schreck
,
S.
, and
Raffel
,
M.
,
2005
, “
Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics
,”
AIAA J.
,
43
(
5
), pp.
1023
1033
. 10.2514/1.8830
5.
Hand
,
B.
,
Kelly
,
G.
, and
Cashman
,
A.
,
2020
, “
Structural Analysis of an Offshore Vertical Axis Wind Turbine Composite Blade Experiencing an Extreme Wind Load
,”
Marine Struct.
,
75
, p.
102858
. 10.1016/j.marstruc.2020.102858
6.
Schuerich
,
F.
, and
Brown
,
R. E.
,
2011
, “
Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines
,”
AIAA J.
,
49
(
11
), pp.
2511
2521
. 10.2514/1.J051060
7.
Kjellin
,
J.
,
Eriksson
,
S.
, and
Bernhoff
,
H.
,
2013
, “
Electric Control Substituting Pitch Control for Large Wind Turbines
,”
J. Wind Energy
,
2013
, pp.
1
4
. 10.1155/2013/342061
8.
Mays
,
I. D.
,
Morgan
,
C. A.
,
Anderson
,
N. B.
, and
Powles
,
S. J. R.
,
1990
, “
Experience With the VAWT 850 Demonstration Project
,”
European Community Wind Energy Conference 1990
,
Madrid, Spain
,
Sept. 10–14
, pp.
482
487
.
9.
Ferreira
,
S. C.
,
Zuijlen
,
A. van
,
Bijl
,
H.
, and
Kuik
,
G. van
,
2010
, “
Simulating Dynamic Stall in a Two-Dimensional Vertical-Axis Wind Turbine: Verfication and Validation With Particle Image Velocimetry Data
,”
Wind Energy
,
13
, pp.
1
17
. 10.1002/we.330
10.
Laneville
,
A.
, and
Vittecoq
,
P.
,
1986
, “
Dynamic Stall: The Case of the Vertical Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
108
(
2
), pp.
140
145
. 10.1115/1.3268081
11.
Fujisawa
,
N.
, and
Shibuya
,
S.
,
2001
, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
2
), pp.
201
214
. 10.1016/S0167-6105(00)00062-3
12.
Carr
,
L. W.
,
McAlister
,
K. W.
, and
McCroskey
,
W. J.
,
1977
, “
Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments
,”
Technical Report, January
,
National Aeronautics and Space Administration
.
13.
Coton
,
F. N.
,
Galbraith
,
R. A. M.
, and
Jiang
,
D.
,
1996
, “
The Influence of Detailed Blade Design on the Aerodynamic Performance of Straight-Bladed Vertical Axis Wind Turbines
,”
J. Power Energy
,
210
(
A
), pp.
65
74
. 10.1243/PIME_PROC_1996_210_009_02
14.
Ekaterinaris
,
J. A.
, and
Platzer
,
M. F.
,
1998
, “
Computational Prediction of Airfoil Dynamic Stall
,”
Prog. Aerosp. Sci.
,
33
(
11–12
), pp.
759
846
. 10.1016/S0376-0421(97)00012-2
15.
Johnson
,
W.
,
1974
, “
Comparison of Three Methods for Calculation of Helicopter Rotor Blade Loading and Stresses Due to Stall
,”
Technical Report, November
.
16.
Tran
,
C. T.
, and
Petot
,
D.
,
1981
, “
Semi-Empirical Model for the Dynamic Stall of Airfoils in View of the Application to the Calculation of the Responses of Helicopter Blade in Forward Flight
,”
Vertica
,
5
(
1
), pp.
35
53
.
17.
Gormont
,
R. E.
,
1973
, “
A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application to Helicopter Rotors
,”
Technical Report
,
Boeing–Vertol Company
.
18.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design: With Emphasis on Darrieus Concept
,
Presses Internationales Polytechnique
,
Montréal, Canada
.
19.
Dyachuk
,
E.
, and
Goude
,
A.
,
2015
, “
Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model
,”
Energies
,
8
(
2
), pp.
1353
1372
. 10.3390/en8021353
20.
Borg
,
M.
,
Shires
,
A.
, and
Collu
,
M.
,
2014
, “
Offshore Floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art. Part I: Aerodynamics
,”
Renew. Sustain. Energy Rev.
,
39
, pp.
1214
1225
. 10.1016/j.rser.2014.07.096
21.
Leishman
,
J. G.
, and
Beddoes
,
T.
,
1986
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
(
3
), pp.
3
17
. 10.4050/jahs.34.3.3
22.
Beddoes
,
T. S.
,
1993
, “
A Third Generation Model for Unsteady Aerodynamics and Dynamic Stall
,”
Technical Report
,
Westland Helicopter, Ltd
.
23.
Sheng
,
W.
,
Galbraith
,
R. A. M.
, and
Coton
,
F. N.
,
2008
, “
A Modified Dynamic Stall Model for Low Mach Numbers
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), p.
031013
. 10.1115/1.2931509
24.
Niven
,
A.
, and
Galbraith
,
R.
,
1997
, “
Modelling Dynamic Stall Vortex Inception at Low Mach Numbers
,”
Aeronaut. J.
,
101
(
1002
), pp.
67
76
.
25.
Sheng
,
W.
,
Galbraith
,
R.
, and
Coton
,
F.
,
2007
, “
Improved Dynamic-Stall-Onset Criterion at Low Mach Numbers
,”
J. Aircraft
,
44
(
3
), pp.
3
6
. 10.2514/1.29163
26.
Gracey
,
M. W.
,
Niven
,
A. J.
, and
Coton
,
F. N.
,
1996
, “
A Correlation Indicating Incipient Dynamic Stall
,”
Aeronaut. J.
,
100
(
997
), pp.
305
311
.
27.
Dyachuk
,
E.
,
Goude
,
A.
, and
Bernhoff
,
H.
,
2014
, “
Dynamic Stall Modeling for the Conditions of Vertical Axis Wind Turbines
,”
AIAA J.
,
52
(
1
), pp.
72
81
. 10.2514/1.J052633
28.
Leishman
,
J. G.
,
2002
, “
Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines
,”
Wind Energy
,
5
(
2–3
), pp.
85
132
. 10.1002/we.62
29.
Ghasemian
,
M.
,
Ashrafi
,
Z. N.
, and
Sedaghat
,
A.
,
2017
, “
A Review on Computational Fluid Dynamic Simulation Techniques for Darrieus Vertical Axis Wind Turbines
,”
Energy Convers. Manage.
,
149
, pp.
87
100
. 10.1016/j.enconman.2017.07.016
30.
Thé
,
J.
, and
Yu
,
H.
,
2017
, “
A Critical Review on the Simulations of Wind Turbine Aerodynamics Focusing on Hybrid RANS–LES Methods
,”
Energy
,
138
, pp.
257
289
. 10.1016/j.energy.2017.07.028
31.
Allet
,
A.
,
Halle
,
S.
, and
Paraschivoiu
,
I.
,
1999
, “
Numerical Simulation of Dynamic Stall Around an Airfoil in Darrieus Motion
,”
ASME J. Sol. Energy Eng.
,
121
(
1
), pp.
69
76
. 10.1115/1.2888145
32.
Amet
,
E. Maitre
, and
Achard
,
J.-L.
,
2009
, “
2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine
,”
ASME J. Fluid. Eng.
,
131
(
11
), p.
111103
. 10.1115/1.4000258
33.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
. 10.1016/j.compfluid.2010.05.004
34.
Maître
,
T.
,
Amet
,
E.
, and
Pellone
,
C.
,
2013
, “
Modeling of the Flow in a Darrieus Water Turbine: Wall Grid Refinement Analysis and Comparison With Experiments
,”
Renew. Energy
,
51
, pp.
497
512
. 10.1016/j.renene.2012.09.030
35.
Almohammadi
,
K. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashan
,
M.
,
2013
, “
Computational Fluid Dynamics (CFD) Mesh Independency Techniques for a Straight Blade Vertical Axis Wind Turbine
,”
Energy
,
58
, pp.
483
493
. 10.1016/j.energy.2013.06.012
36.
McNaughton
,
J.
,
Billard
,
F.
, and
Revell
,
A.
,
2014
, “
Turbulence Modelling of Low Reynolds Number Flow Effects Around a Vertical Axis Turbine at a Range of Tip-Speed Ratios
,”
J. Fluids Struct.
,
47
, pp.
124
138
. 10.1016/j.jfluidstructs.2013.12.014
37.
Campobasso
,
M. S.
,
Drofelnik
,
J.
, and
Gigante
,
F.
,
2016
, “
Comparative Assessment of the Harmonic Balance Navier–Stokes Technology for Horizontal and Vertical Axis Wind Turbine Aerodynamics
,”
Comput. Fluids
,
136
, pp.
354
370
. 10.1016/j.compfluid.2016.06.023
38.
Buchner
,
A.-J.
,
Lohry
,
M.
,
Martinelli
,
L.
,
Soria
,
J.
, and
Smits
,
A.
,
2015
, “
Dynamic Stall in Vertical Axis Wind Turbines: Comparing Experiments and Computations
,”
J. Wind Eng. Ind. Aerodyn.
,
146
, pp.
163
171
. 10.1016/j.jweia.2015.09.001
39.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manage.
,
136
, pp.
318
328
. 10.1016/j.enconman.2017.01.026
40.
Zanforlin
,
S.
, and
Nishino
,
T.
,
2016
, “
Fluid Dynamic Mechanisms of Enhanced Power Generation by Closely Spaced Vertical Axis Wind Turbines
,”
Renew. Energy
,
99
, pp.
1213
1226
. 10.1016/j.renene.2016.08.015
41.
Li
,
C.
,
Zhu
,
S.
,
Xu
,
Y.-l.
, and
Xiao
,
Y.
,
2013
, “
2.5D Large Eddy Simulation of Vertical Axis Wind Turbine in Consideration of High Angle of Attack Flow
,”
Renew. Energy
,
51
, pp.
317
330
. 10.1016/j.renene.2012.09.011
42.
Rezaeiha
,
A.
,
Kalkman
,
I.
, and
Blocken
,
B.
,
2017
, “
CFD Simulation of a Vertical Axis Wind Turbine Operating at a Moderate Tip Speed Ratio: Guidelines for Minimum Domain Size and Azimuthal Increment
,”
Renew. Energy
,
107
, pp.
373
385
. 10.1016/j.renene.2017.02.006
43.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Accurate CFD Simulations of Vertical Axis Wind Turbines at Different Tip Speed Ratios and Solidities: Guidelines for Azimuthal Increment, Domain Size and Convergence
,”
Energy Convers. Manage.
,
156
, pp.
301
316
. 10.1016/j.enconman.2017.11.026
44.
Raciti Castelli
,
M.
,
Englaro
,
A.
, and
Benini
,
E.
,
2011
, “
The Darrieus Wind Turbine: Proposal for a New Performance Prediction Model Based on CFD
,”
Energy
,
36
(
8
), pp.
4919
4934
. 10.1016/j.energy.2011.05.036
45.
Trivellato
,
F.
, and
Raciti Castelli
,
M.
,
2014
, “
On the Courant–Friedrichs–Lewy Criterion of Rotating Grids in 2D Vertical-Axis Wind Turbine Analysis
,”
Renew. Energy
,
62
, pp.
53
62
. 10.1016/j.renene.2013.06.022
46.
Rossetti
,
A.
, and
Pavesi
,
G.
,
2013
, “
Comparison of Different Numerical Approaches to the Study of the H-Darrieus Turbines Start-Up
,”
Renew. Energy
,
50
, pp.
7
19
. 10.1016/j.renene.2012.06.025
47.
Balduzzi
,
F.
,
Ferrara
,
G.
,
Bianchini
,
A.
,
Campobasso
,
M. S.
, and
Gigante
,
F. A.
,
2015
, “
Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
Proceedings of the ASME Turbo Expo 2015
,
Montreal, Quebec, Canada
,
June 15–19
, pp.
1
12
.
48.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
. 10.1016/j.energy.2015.12.111
49.
Balduzzi
,
F.
,
Drofelnik
,
J. Bianchini
,
Ferrari
,
L.
, and
Campobasso
,
M. S.
,
2017
, “
Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier–Stokes CFD Assessment
,”
Energy
,
128
, pp.
550
563
. 10.1016/j.energy.2017.04.017
50.
Lam
,
H.
, and
Peng
,
H.
,
2016
, “
Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two- and Three-Dimensional Computational Fluid Dynamics Simulations
,”
Renew. Energy
,
90
, pp.
386
398
. 10.1016/j.renene.2016.01.011
51.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renew. Energy
,
35
(
2
), pp.
412
422
. 10.1016/j.renene.2009.07.025
52.
Marsh
,
P.
,
Ranmuthugala
,
D.
,
Penesis
,
I.
, and
Thomas
,
G.
,
2017
, “
The Influence of Turbulence Model and Two and Three-Dimensional Domain Selection on the Simulated Performance Characteristics of Vertical Axis Tidal Turbines
,”
Renew. Energy
,
81
, pp.
926
935
. 10.1016/j.renene.2015.03.083
53.
Orlandi
,
A.
, and
Collu
,
M. Zanforlin
,
2015
, “
3D URANS Analysis of a Vertical Axis Wind Turbine in Skewed Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
77
84
. 10.1016/j.jweia.2015.09.010
54.
Bachant
,
P.
, and
Wosnik
,
M.
,
2016
, “
Modeling the Near-Wake of a Vertical-Axis Cross-Flow Turbine With 2-D and 3-D RANS
,”
J. Renew. Sustain. Energy
,
8
(
5
), p.
053311
. 10.1063/1.4966161
55.
Chowdhury
,
A. M.
,
Akimoto
,
H.
, and
Hara
,
Y.
,
2016
, “
Comparative CFD Analysis of Vertical Axis Wind Turbine in Upright and Tilted Configuration
,”
Renew. Energy
,
85
, pp.
327
337
. 10.1016/j.renene.2015.06.037
56.
Li
,
Q.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Murata
,
J.
,
Kawabata
,
T.
,
Shimizu
,
K.
,
Ogasawara
,
T.
,
Nakai
,
A.
, and
Kasuya
,
T.
,
2016
, “
Wind Tunnel and Numerical Study of a Straight-Bladed Vertical Axis Wind Turbine in Three-Dimensional Analysis (Part I: For Predicting Aerodynamic Loads and Performance)
,”
Energy
,
106
, pp.
443
452
. 10.1016/j.energy.2016.03.089
57.
Li
,
Q.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Murata
,
J.
,
Kawabata
,
T.
,
Shimizu
,
K.
,
Ogasawara
,
T.
,
Nakai
,
A.
, and
Kasuya
,
T.
,
2016
, “
Wind Tunnel and Numerical Study of a Straight-Bladed Vertical Axis Wind Turbine in Three-Dimensional Analysis (Part II: For Predicting Flow Field and Performance)
,”
Energy
,
104
, pp.
295
307
. 10.1016/j.energy.2016.03.129
58.
Scheurich
,
F.
,
Fletcher
,
T. M.
, and
Brown
,
R. E.
,
2014
, “
Simulating the Aerodynamic Performance and Wake Dynamics of a Vertical-Axis Wind Turbine
,”
Wind Energy
,
17
, pp.
159
177
. 10.1002/we.409
59.
Lei
,
H.
,
Zhou
,
D.
,
Lu
,
J.
,
Chen
,
C.
,
Han
,
Z.
, and
Bao
,
Y.
,
2017
, “
The Impact of Pitch Motion of a Platform on the Aerodynamic Performance of a Floating Vertical Axis Wind Turbine
,”
Energy
,
119
, pp.
369
383
. 10.1016/j.energy.2016.12.086
60.
Lei
,
H.
,
Zhou
,
D.
,
Bao
,
Y.
,
Chen
,
C.
,
Ma
,
N.
, and
Han
,
Z.
,
2017
, “
Numerical Simulations of the Unsteady Aerodynamics of a Floating Vertical Axis Wind Turbine in Surge Motion
,”
Energy
,
127
, pp.
1
17
. 10.1016/j.energy.2017.03.087
61.
Elkhoury
,
M.
,
Kiwata
,
T.
, and
Aoun
,
E.
,
2015
, “
Experimental and Numerical Investigation of a Three-Dimensional Vertical-Axis Wind Turbine With Variable-Pitch
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
111
123
. 10.1016/j.jweia.2015.01.004
62.
Peng
,
H.
, and
Lam
,
H.
,
2016
, “
Turbulence Effects on the Wake Characteristics and Aerodynamic Performance of a Straight-Bladed Vertical Axis Wind Turbine by Wind Tunnel Tests and Large Eddy Simulations
,”
Energy
,
109
, pp.
557
568
. 10.1016/j.energy.2016.04.100
63.
Posa
,
A.
, and
Balaras
,
E.
,
2018
, “
Large Eddy Simulation of an Isolated Vertical Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
172
, pp.
139
151
. 10.1016/j.jweia.2017.11.004
64.
Green
,
R. B.
, and
Galbraith
,
R. A. M.
,
1995
, “
Dynamic Recovery to Fully Attached Aerofoil Flow From Deep Stall
,”
AIAA J.
,
33
(
8
), pp.
1433
1440
. 10.2514/3.12565
65.
Hand
,
B.
,
Kelly
,
G.
, and
Cashman
,
A.
,
2017
, “
Numerical Simulation of a Vertical Axis Wind Turbine Airfoil Experiencing Dynamic Stall at High Reynolds Numbers
,”
Comput. Fluids
,
149
, pp.
12
30
. 10.1016/j.compfluid.2017.02.021
66.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI : Wind Tunnel Test Configurations and Available Data Campaigns
,”
Technical Report, July 2015
.
67.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
CFD Analysis of Dynamic Stall on Vertical Axis Wind Turbines Using Scale-Adaptive Simulation (SAS): Comparison Against URANS and Hybrid RANS/LES
,”
Energy Convers. Manage.
,
196
(
June
), pp.
1282
1298
. 10.1016/j.enconman.2019.06.081
68.
Spentzos
,
A.
,
Barakos
,
G. N.
,
Badcock
,
K. J.
,
Richards
,
B. E.
,
Coton
,
F. N.
,
McD Galbraith
,
R. A.
,
Berton
,
E.
, and
Favier
,
D.
,
2007
, “
Computational Fluid Dynamics Study of Three-Dimensional Dynamic Stall of Various Platform Shapes
,”
J. Aircraft
,
44
(
4
), pp.
1118
1128
. 10.2514/1.24331
69.
Akins
,
R. E.
,
1989
, “
Measurements of Surface Pressures on an Operating Vertical-Axis Wind Turbine
,”
Technical Report, SAND89-7051
,
Sandia National Laboratories
,
Albuquerque, New Mexico
.
70.
Johnston
,
S.
,
1982
, “
Proceedings of the Vertical Axis Wind Turbine (VAWT) Design Technology Seminar for Industry
,”
Technical Report
,
Sandia National Laboratories
,
Albuquerque, New Mexico
.
71.
Reuter
,
R. C.
,
1980
, “
Torque Ripple in a Darrieus Vertical Axis Wind Turbine
,”
Technical Report
,
Sandia National Laboratories
.
72.
Akins
,
R. E.
,
Berg
,
D. E.
, and
Cyrus
,
W. T.
,
1987
, “
Measurements and Calculations of Aerodynamic Torques for a Vertical-Axis Wind Turbine
,”
Technical Report, SAND86-2164
,
Sandia National Laboratories
.
73.
Akins
,
R. E.
,
1978
, “
Wind Characteristics at the VAWT Test Facility
,”
Technical Report
,
Sandia National Laboratories
.
74.
Worstell
,
M. H.
,
1981
, “
Aerodynamic Performance of the DOE/Sandia 17-m Vertical-Axis Wind Turbine
,”
J. Energy
,
5
(
1
), pp.
39
42
. 10.2514/3.62496
75.
Sheng
,
W.
,
Galbraith
,
R. A. M.
, and
Coton
,
F.
,
2006
, “
A New Stall-Onset Criterion for Low Speed Dynamic-Stall
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
461
471
. 10.1115/1.2346703
76.
Green
,
R. B.
,
Galbraith
,
R. A. M.
, and
Niven
,
A.
,
1992
, “
Measurements of the Dynamic Stall Vortex Convection Speed
,”
Aeronaut. J.
,
96
(
958
), pp.
319
325
.
77.
Hand
,
B.
, and
Cashman
,
A.
,
2018
, “
Aerodynamic Modeling Methods for an Offshore Vertical Axis Wind Turbine: A Comparative Study
,”
Renew. Energy
,
129
, pp.
12
31
. 10.1016/j.renene.2018.05.078
78.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renew. Energy
,
85
, pp.
419
435
. 10.1016/j.renene.2015.06.048
79.
Wilby
,
P. G.
,
2001
, “
The Development of Rotor Airfoil Testing in the UK
,”
J. Am. Helicopter Soc.
,
46
(
3
), pp.
210
220
. 10.4050/JAHS.46.210
80.
Sheng
,
W.
,
Galbraith
,
R. M.
, and
Coton
,
F.
,
2008
, “
Prediction of Dynamic Stall Onset for Oscillatory Low Speed Aerofoils
,”
ASME J. Fluids Eng.
,
130
(10), p.
101204
. 10.1115/1.2969450
81.
Strickland
,
J.
,
Webster
,
B. T.
, and
Nguyen
,
T.
,
1979
, “
A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study
,”
ASME J. Fluids Eng.
,
101
(
4
), pp.
500
505
. 10.1115/1.3449018
82.
Hand
,
B.
, and
Cashman
,
A.
,
2017
, “
Conceptual Design of a Large-Scale Floating Offshore Vertical Axis Wind Turbine
,”
Energy Proc.
,
142
, pp.
83
88
. 10.1016/j.egypro.2017.12.014
You do not currently have access to this content.