Abstract

In this study, genetic algorithms (GAs) and particle swarm optimization (PSO) are used to make an automated choice of hyperparameters of the multilayer perceptron (MLP)-NARX, extreme learning machine (ELM)-NARX, and echo state network (ESN)-NARX neural models applied to the identification of two photovoltaic systems: one installed in Teresina, in Brazil, and another in Hamburg, Germany. The automatic optimization process results showed that the PSO algorithm presents superior performance compared to the GA algorithm. Likewise, the identification carried out aimed to estimate the power generated by photovoltaic systems from two different approaches: linear mathematical models and neural identification models. Thus, the neural models implemented are more efficient and accurate than the linear mathematical models compared. From accuracy, the neural models ESN-NARX and MLP-NARX were considered the best in identifying Hamburg and Teresina’s photovoltaic systems, respectively.

References

References
1.
Fuentes
,
M.
,
Nofuentes
,
G.
,
Aguilera
,
J.
,
Talavera
,
D.
, and
Castro
,
M.
,
2007
, “
Application and Validation of Algebraic Methods to Predict the Behaviour of Crystalline Silicon PV Modules in Mediterranean Climates
,”
Sol. Energy.
,
81
(
11
), pp.
1396
1408
. 10.1016/j.solener.2006.12.008
2.
Mellit
,
A.
,
Sağlam
,
S.
, and
Kalogirou
,
S. A.
,
2013
, “
Artificial Neural Network-Based Model for Estimating the Produced Power of a Photovoltaic Module
,”
Renewable Energy
,
60
, pp.
71
78
. 10.1016/j.renene.2013.04.011
3.
Ameen
,
A. M.
,
Pasupuleti
,
J.
,
Khatib
,
T.
,
Elmenreich
,
W.
, and
Kazem
,
H. A.
,
2015
, “
Modeling and Characterization of a Photovoltaic Array Based on Actual Performance Using Cascade-Forward Back Propagation Artificial Neural Network
,”
ASME J. Sol. Energy. Eng.
,
137
(
4
), p.
041010
. 10.1115/1.4030693
4.
Schmelas
,
M.
,
Feldmann
,
T.
,
da Costa Fernandes
,
J.
, and
Bollin
,
E.
,
2015
, “
Photovoltaics Energy Prediction Under Complex Conditions for a Predictive Energy Management System
,”
ASME J. Sol. Energy. Eng.
,
137
(
3
), p.
031015
. 10.1115/1.4029378
5.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Elaziz
,
M. A.
,
Kabeel
,
A.
,
Guilan
,
W.
, and
Haiou
,
Z.
,
2019
, “
Modeling of Solar Energy Systems Using Artificial Neural Network: A Comprehensive Review
,”
Sol. Energy.
,
180
, pp.
622
639
. 10.1016/j.solener.2019.01.037
6.
Tötterman
,
S.
, and
Toivonen
,
H. T.
,
2009
, “
Support Vector Method for Identification of Wiener Models
,”
J. Process. Control.
,
19
(
7
), pp.
1174
1181
. 10.1016/j.jprocont.2009.03.003
7.
Chen
,
S.
, and
Billings
,
S.
,
1992
, “
Neural Networks for Nonlinear Dynamic System Modelling and Identification
,”
Int. J. Control
,
56
(
2
), pp.
319
346
. 10.1080/00207179208934317
8.
Miche
,
Y.
,
Schrauwen
,
B.
, and
Lendasse
,
A.
,
2010
, “
Machine Learning Techniques Based on Random Projections
,”
European Symposium on Artificial Neural Networks (ESANN)
,
Bruges, Belgium
,
Apr. 28–30
.
9.
Tang
,
Y.
,
Li
,
Z.
, and
Guan
,
X.
,
2014
, “
Identification of Nonlinear System Using Extreme Learning Machine Based Hammerstein Model
,”
Commun. Nonlinear Sci. Num. Simul.
,
19
(
9
), pp.
3171
3183
. 10.1016/j.cnsns.2013.12.006
10.
Lacy
,
S. E.
,
Smith
,
S. L.
, and
Lones
,
M. A.
,
2018
, “
Using Echo State Networks for Classification: A Case Study in Parkinson’s Disease Diagnosis
,”
Artificial Intell. Med.
,
86
, pp.
53
59
. 10.1016/j.artmed.2018.02.002
11.
Wan
,
C.
,
Xu
,
Z.
,
Pinson
,
P.
,
Dong
,
Z. Y.
, and
Wong
,
K. P.
,
2013
, “
Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine
,”
IEEE Trans. Power Syst.
,
29
(
3
), pp.
1033
1044
. 10.1109/TPWRS.2013.2287871
12.
Itano
,
F.
,
de Sousa
,
M. A. d. A.
, and
Del-Moral-Hernandez
,
E.
,
2018
, “
Extending MLP ANN Hyper-Parameters Optimization by Using Genetic Algorithm
,”
2018 International Joint Conference on Neural Networks (IJCNN)
,
Rio de Janeiro, Brazil
,
July 8–13
.
13.
Ma
,
L.
,
Zhao
,
L.
, and
Wang
,
X.
,
2017
, “
Prediction of Thermal System Parameters Based on PSO-ELM Hybrid Algorithm
,”
2017 Chinese Automation Congress (CAC)
,
Jinan, China
,
Oct. 20–22
.
14.
Jiahui
,
W.
,
Weishi
,
M.
, and
Zhiyu
,
Z.
,
2018
, “
Short-Term Load Forecasting Based on GA-PSO Optimized Extreme Learning Machine
,”
2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2)
,
Beijing, China
,
Oct. 20–22
.
15.
Luo
,
P.
,
Zhu
,
S.
,
Han
,
L.
, and
Chen
,
Q.
,
2017
, “
Short-Term Photovoltaic Generation Forecasting Based on Similar Day Selection and Extreme Learning Machine
,”
2017 IEEE Power & Energy Society General Meeting
,
Chicago, IL
,
July 16–20
.
16.
Menezes
,
J. M. P., Jr.
, and
Barreto
,
G. A.
,
2008
, “
Long-Term Time Series Prediction With the Narx Network: An Empirical Evaluation
,”
Neurocomputing
,
71
(
16–18
), pp.
3335
3343
. 10.1016/j.neucom.2008.01.030
17.
Sahoo
,
H.
,
Dash
,
P.
, and
Rath
,
N.
,
2013
, “
Narx Model Based Nonlinear Dynamic System Identification Using Low Complexity Neural Networks and Robust HFilter
,”
Appl. Soft. Comput.
,
13
(
7
), pp.
3324
3334
. 10.1016/j.asoc.2013.02.007
18.
Rahman
,
M. H.
, and
Yamashiro
,
S.
,
2007
, “
Novel Distributed Power Generating System of PV-ECASS Using Solar Energy Estimation
,”
IEEE Trans. Energy Conver.
,
22
(
2
), pp.
358
367
. 10.1109/TEC.2006.870832
19.
Mellit
,
A.
,
Kalogirou
,
S. A.
,
Hontoria
,
L.
, and
Shaari
,
S.
,
2009
, “
Artificial Intelligence Techniques for Sizing Photovoltaic Systems: A Review
,”
Renewable. Sustainable. Energy. Rev.
,
13
(
2
), pp.
406
419
. 10.1016/j.rser.2008.01.006
20.
Penrose
,
R.
,
1956
, “
On Best Approximate Solutions of Linear Matrix Equations
,”
Mathematical Proceedings of the Cambridge Philosophical Society
,
Cambridge, UK
,
January
.
21.
Jaeger
,
H.
,
2001
, “
The ‘Echo State’ Approach to Analyzing and Training Rrecurrent Neural Networks
,”
Res. Center Inf. Technol.
,
Sankt Augustin, Germany, Technical Report 148
.
22.
Zheng
,
D.-D.
,
Pan
,
Y.
,
Guo
,
K.
, and
Yu
,
H.
,
2019
, “
Identification and Control of Nonlinear Systems Using Neural Networks: A Singularity-Free Approach
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
30
(
9
), pp.
2696
2706
. 10.1109/TNNLS.2018.2886135
23.
Norgard
,
P. M.
,
Ravn
,
O.
,
Poulsen
,
N. K.
, and
Hansen
,
L. K.
,
2000
,
Neural Networks for Modelling and Control of Dynamic Systems – A Practitioner’s Handbook
,
Springer-London
.
24.
Kupin
,
A.
,
2007
, “
Neural Identification of Technological Process of Iron Ore Beneficiation
,”
2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
,
Dortmund, Germany
,
Sept. 6–8
.
25.
Billings
,
S.
, and
Voon
,
W.
,
1983
, “
Structure Detection and Model Validity Tests in the Identification of Nonlinear Systems
,”
IEE Proceedings D-Control Theory and Applications
,
Sheffield, UK
,
July
.
26.
Billings
,
S.
, and
Voon
,
W.
,
1986
, “
Correlation Based Model Validity Tests for Non-Linear Models
,”
Int. J. Control
,
44
(
1
), pp.
235
244
. 10.1080/00207178608933593
27.
Billings
,
S.
, and
Zhu
,
Q.
,
1995
, “
Model Validation Tests for Multivariable Nonlinear Models Including Neural Networks
,”
Int. J. Control
,
62
(
4
), pp.
749
766
. 10.1080/00207179508921566
28.
Hutter
,
F.
,
Kotthoff
,
L.
, and
Vanschoren
,
J.
,
2019
,
Automated Machine Learning
,
Springer
,
New York
.
29.
Bergstra
,
J.
,
Yamins
,
D.
, and
Cox
,
D. D.
,
2013
, “
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
,”
International Conference on Machine Learning (ICML)
,
Atlanta, GA
,
June 16–21
.
30.
Eberhart
,
R. C.
, and
Shi
,
Y.
,
2000
, “
Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization
,”
Proceedings of the 2000 Congress on Evolutionary Computation, CEC00 (Cat. No. 00TH8512)
,
La Jolla, CA
,
July 16–19
.
31.
Blackwell
,
T. M.
,
Kennedy
,
J.
, and
Poli
,
R.
,
2007
, “
Particle Swarm Optimization
,”
Swarm Intel.
,
1
(
1
), pp.
33
57
. 10.1007/s11721-007-0002-0
32.
Jung
,
J.-Y.
,
Heo
,
W.
,
Yang
,
H.
, and
Park
,
H.
,
2015
, “
A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots
,”
Sensors
,
15
(
11
), pp.
27738
27759
. 10.3390/s151127738
33.
Isqeel
,
A. A.
,
Eyiomika
,
S. M. -J.
, and
Ismaeel
,
T. B.
,
2016
, “
Consumer Load Prediction Based on Narx for Electricity Theft Detection
,”
2016 International Conference on Computer and Communication Engineering (ICCCE)
,
IEEE
, pp.
294
299
.
You do not currently have access to this content.