Abstract

In this work, we demonstrate the improvement of thermal performances of a heat pipe parabolic trough solar collector by optimizing the annulus space, between the evaporator and the glass envelope, and using an appropriate filling gas. We compared the system thermal effectiveness for nine filling gases (hydrogen, air, helium, neon, oxygen, nitrogen, argon, krypton, and xenon). The results showed that using xenon or krypton leads to the best thermal yield (70%). While krypton arises to be the most energetically efficient filling gas, argon, with a thermal yield of 62%, presents a best compromise as the cheapest inert gas. In addition, we showed that the annular space size should be less than a critical value to minimize heat losses and to reduce the material cost during manufacturing.

References

1.
Faghri
,
A.
,
2014
, “
Heat Pipes: Review, Opportunities and Challenges
,”
Front. Heat Pipes
,
5
(
1
), pp.
1
48
.
2.
Ismail
,
K. A. R.
, and
Abogderah
,
M. M.
,
1998
, “
Performance of a Heat Pipe Solar Collector
,”
ASME J. Sol. Energy Eng.
,
120
(
1
), pp.
51
59
.
3.
Mathioulakis
,
E.
, and
Belessiotis
,
V.
,
2002
, “
A New Heat-Pipe Type Solar Domestic Hot Water System
,”
Sol. Energy
,
72
(
1
), pp.
13
20
.
4.
Brahim
,
T.
,
Dhaou
,
M. H.
, and
Jemni
,
A.
,
2014
, “
Theoretical and Experimental Investigation of Plate Screen Mesh Heat Pipe Solar Collector
,”
Energy Convers. Manage.
,
87
(
1
), pp.
428
438
.
5.
Chamsa-ard
,
W.
,
Sukchai
,
S.
,
Sonsaree
,
S.
, and
Sirisamphanwong
,
C.
,
2014
, “
Thermal Performance Testing of Heat Pipe Evacuated Tube With Compound Parabolic Concentrating Solar Collector by ISO 9806—1
,”
Energy Procedia
,
56
(
C
), pp.
237
246
.
6.
Nemec
,
P.
,
Čaja
,
A.
, and
Malcho
,
M.
,
2013
, “
Mathematical Model for Heat Transfer Limitations of Heat Pipe
,”
Math. Comput. Modell.
,
57
(
1–2
), pp.
126
136
.
7.
Janan
,
M. A.
,
Taqi
,
M.
, and
Chakir
,
H.
,
2020
, “
Modeling and Optimization of a New Configuration of Heat Pipe Parabolic Trough Collector for Solar Water Heating
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031005
.
8.
Madhukeshwara
,
N.
, and
Prakash
,
E. S.
,
2012
, “
An Investigation on the Performance Characteristics of Solar Flat Plate Collector With Different Selective Surface Coatings
,”
Int. J. Energy Environ.
,
3
(
1
), pp.
99
108
.
9.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
ASME J. Heat Tranfer
,
98
(
2
), pp.
189
193
.
10.
Buchberg
,
H.
,
Catton
,
I.
, and
Edwards
,
D. K.
,
1976
, “
Natural Convection in Enclosed Spaces: A Review of Application to Solar Energy Collection
,”
ASME J. Heat Transfer
,
98
(
2
), pp.
182
188
.
11.
Ratzel
,
A. C.
,
Hickox
,
C. E.
, and
Gartling
,
D. K.
,
1979
, “
Techniques for Reducing Thermal Conduction and Natural Convection Heat Losses in Annular Receiver Geometries
,”
ASME J. Heat Transfer
,
101
(
2
), pp.
108
113
.
12.
Agbo
,
S. N.
, and
Okoroigwe
,
E. C.
,
2007
, “
Analysis of Thermal Losses in the Flat-Plate Collector of a Thermosyphon Solar Water Heater
,”
Res. J. Phys.
,
1
(
1
), pp.
35
41
.
13.
Nahar
,
N. M.
, and
Gupta
,
J. P.
,
1989
, “
Studies on Gap Spacing Between Absorber and Cover Glazing in Flat Plate Solar Collectors
,”
Int. J. Energy Res.
,
13
(
6
), pp.
727
732
.
14.
Al-Ansary
,
H.
, and
Zeitoun
,
O.
,
2011
, “
Numerical Study of Conduction and Convection Heat Losses From a Half-Insulated Air-Filled Annulus of the Receiver of a Parabolic Trough Collector
,”
Solar Energy
,
85
(
9
), pp.
3036
3045
.
15.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,” Technical Report, NREL/TP-550-34169, National Renewable Energy Laboratory, Golden, CO.
16.
Beikircher
,
T.
,
Benz
,
N.
, and
SpirkI
,
W.
,
1995
, “
Gas Heat Conduction in Evacuated Flat-Plate Solar Collectors: Analysis and Reduction
,”
ASME J. Sol. Energy Eng.
,
117
(
3
), pp.
229
235
.
17.
Zhang
,
W.
,
Xue
,
Q.
,
Nie
,
J.
,
Cheng
,
L.
,
Wang
,
J.
, and
Song
,
C.
,
2017
, “
Structure and Gas Optimization for Annular Space of Parabolic Trough Solar Linear Receiver
,”
Trans. Chin. Soc. Agric. Eng.
,
33
(
20
), pp.
257
264
.
18.
Johan
,
V.
,
Mats
,
R.
, and
Jan-Olof
,
D.
,
2009
, “
Thermal Performance of Gas-Filled, Flat Plate Solar Collectors
,”
Sol. Energy
,
83
(
6
), pp.
896
904
.
19.
Vestlund
,
J.
,
2012
,
Gas-Filled, Flat Plate Solar Collectors
,
Department of Energy and Environment, Chalmers University of Technology
,
Gothenburg
.
20.
Mousavi Maleki
,
S. A.
,
Hizam
,
H.
, and
Gomes
,
C.
,
2017
, “
Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited
,”
Energies
,
10
(
1
), pp.
1
28
.
21.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
Wiley Interscience
,
New York
, pp.
31
47
, 347.
22.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
23.
Marif
,
Y.
,
Benmoussa
,
H.
,
Bouguettaia
,
H.
,
Belhadj
,
M. M.
, and
Zerrouki
,
M.
,
2014
, “
Numerical Simulation of Solar Parabolic Trough Collector Performance in the Algeria Saharan Region
,”
Energy Convers. Manage.
,
85
(
1
), pp.
521
529
.
24.
García-Valladares
,
O.
, and
Velázquez
,
N.
,
2009
, “
Numerical Simulation of Parabolic Trough Solar Collector: Improvement Using Counter Flow Concentric Circular Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
597
609
.
25.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington, DC
.
26.
Faghri
,
A.
, and
Buchko
,
M.
,
1991
, “
Experimental and Numerical Analysis of Low-Temperature Heat Pipes With Multiple Heat Sources
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
728
734
.
27.
Jahanbakhsh
,
A.
,
Haghgou
,
H. R.
, and
Alizadeh
,
S.
,
2015
, “
Experimental Analysis of a Heat Pipe Operated Solar Collector Using Water-Ethanol Solution as the Working Fluid
,”
Sol. Energy
,
118
(
6
), pp.
267
275
.
28.
Incropera
,
P. F.
, and
DeWitt
,
P. D.
,
2011
,
Introduction to Heat Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
29.
Assael
,
M. J.
,
Kalyva
,
A. E.
,
Monogenidou
,
S. A.
,
Huber
,
M. L.
,
Perkins
,
R. A.
,
Friend
,
D. G.
, and
May
,
E. F.
,
2018
, “
Reference Values and Reference Correlations for the Thermal Conductivity and Viscosity of Fluids
,”
J. Phys. Chem. Ref. Data
,
47
(
2
), pp.
1
10
.
You do not currently have access to this content.