Abstract

A solar powered trigeneration system consisting of tower solar collector, Kalina cycle with the heat exchanger, and ejector-absorption refrigeration cycle is proposed to produce refrigeration below freezing, electricity, and process heat, simultaneously. Simulation through computational fluid dynamics using ansys-fluent package is conducted to examine the effect of coil diameter and inlet oil temperature on the pressure and temperature of solar heat transfer fluid. It is found that, for inlet temperature of 92 °C and direct normal irradiations of 850 W/m2, the solar heat transfer fluid outlet temperature increases by 9% when the coil diameter increased from 150 to 400 mm. Trigeneration performance is analyzed after altering hot oil outlet temperature, turbine inlet pressure, and the concentration of ammonia–water basic solution to study their effect on power produced by turbine, refrigeration load, exergy of refrigeration, and efficiencies of trigeneration system. An increase in the concentration of the ammonia–water basic solution is leading toward the significant increase in the turbine power and the elevation of trigeneration system’s energy and exergy efficiencies. Bottoming of the Kalina cycle with ejector-absorption refrigeration cycle shows the distribution of solar energy as energetic output 72.31% and energy lost to environment 27.69%. The solar exergy supplied to the trigeneration system is distributed as follows: 16.23% is the exergy produced, 1.62% is the exergy loss, and 82.15% is the exergy destroyed.

References

1.
Goswami
,
D. Y.
,
1998
, “
Solar Thermal Power Technology: Present Status and Ideas for the Future
,”
Energy Sources
,
20
(
2
), pp.
37
145
.
2.
Aghaziarati
,
Z.
, and
Aghdam
,
A. H.
,
2021
, “
Thermoeconomic Analysis of a Novel Combined Cooling, Heating and Power System Based on Solar Organic Rankine Cycle and Cascade Refrigeration Cycle
,”
Renew. Energy
,
164
, pp.
1267
1283
.
3.
Bamisile
,
O.
,
Huang
,
Q.
,
Dagbasi
,
M.
,
Abid
,
M.
,
Okafor
,
E. C.
, and
Ratlamwala
,
T. A. H.
,
2020
, “
Concentrated Solar Powered Novel Multi-Generation System: A Energy, Exergy, and Environmental Analysis
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
051005
.
4.
Biboum
,
A. C.
, and
Yilanci
,
A.
,
2021
, “
Thermodynamic and Economic Assessment of Solar Thermal Power Plants for Cameroon
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041004
.
5.
Rabbani
,
M.
,
Ratlamwala
,
T. A. H.
, and
Dincer
,
I.
,
2015
, “
Transient Energy and Exergy Analyses of a Solar Based Integrated System
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p.
011010
.
6.
Dunham
,
M. T.
, and
Iverson
,
B. D.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
758
770
.
7.
Wang
,
J.
,
Dai
,
Y.
,
Gao
,
L.
, and
Ma
,
S.
,
2009
, “
A New Combined Cooling, Heating and Power System Driven by Solar Energy
,”
Renew. Energy
,
34
(
12
), pp.
2780
2788
.
8.
Khaliq
,
A.
,
Kumar
,
R.
,
Dincer
,
I.
, and
Khalid
,
F.
,
2014
, “
Energy and Exergy Analyses of a New Triple-Staged Refrigeration Cycle Using Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011004
.
9.
Braimakis
,
K.
,
2021
, “
Solar Ejector Cooling Systems: A Review
,”
Renew. Energy
,
164
, pp.
566
602
.
10.
Grosu
,
L.
,
Marin
,
A.
,
Dobrovicescu
,
A.
, and
Oueiros-code
,
D.
,
2015
, “
Exergy Analysis of a Solar Combined Cycle: Organic Rankine Cycle and Absorption Cooling System
,”
Int. J. Energy Environ. Eng.
,
7
(
4
), pp.
449
459
.
11.
Khaliq
,
A.
,
2017
, “
Energetic and Exergetic Performance Investigation of a Solar Based Integrated System for Cogeneration of Power and Cooling
,”
Appl. Therm. Eng.
,
112
, pp.
1305
1316
.
12.
Elakhdar
,
M.
,
Landoulsi
,
H.
,
Tashtoush
,
B.
,
Nehdi
,
E.
, and
Kairouani
,
L.
,
2019
, “
A Combined Thermal System of Ejector Refrigeration and Organic Rankine Cycle for Power Generation Using a Solar Parabolic Trough
,”
Energy Convers. Manag.
,
199
, p.
111947
.
13.
Ghorbani
,
N.
,
Taherian
,
H.
,
Gorji
,
M.
, and
Mirgolbabaei
,
H.
,
2010
, “
An Experimental Study of Thermal Performance of Shell-and-Coil Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
775
781
.
14.
Pawar
,
S. S.
, and
Sunnapwar
,
V. K.
,
2013
, “
Studies on Convective Heat Transfer Through Helical Coils
,”
Heat Mass Transfer
,
49
(
12
), pp.
1741
1754
.
15.
Fouda
,
A.
,
Nada
,
S. A.
,
Elattar
,
H. F.
,
Refaey
,
H. A.
, and
Bin-Mahfouz
,
A. S.
,
2018
, “
Thermal Performance Modeling of Turbulent Flow in Multi Tube in Tube Helically Coiled Heat Exchangers
,”
Int. J. Mech. Sci.
,
135
, pp.
621
638
.
16.
Nada
,
S. A.
,
Elattar
,
H. F.
,
Fouda
,
A.
, and
Refaey
,
H. A.
,
2018
, “
Numerical Investigation of Heat Transfer in Annulus Laminar Flow of Multi Tubes-in-Tube Helical Coil
,”
Heat Mass Transfer
,
54
(
3
), pp.
715
726
.
17.
Elattar
,
H. F.
,
Fouda
,
A.
,
Nada
,
S. A.
,
Refaey
,
H. A.
, and
Al-Zahrani
,
A.
,
2018
, “
Thermal and Hydraulic Numerical Study for a Novel Multi Tubes in Tube Helically Coiled Heat Exchangers: Effects of Operating/Geometric Parameters
,”
Int. J. Therm. Sci.
,
128
, pp.
70
83
.
18.
Allan
,
J.
,
Dehouche
,
Z.
,
Stankovice
,
S.
, and
Harries
,
A.
,
2017
, “
Computational Fluid Dynamics Simulation and Experimental Study of Key Design Parameters of Solar Thermal Collectors
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051001
.
19.
Demuth
,
O. J.
,
1980
, “
Analysis of Binary Thermodynamic Cycles for a Modified Low Temperature Geothermal Resource
,”
Proceedings of the 15th Intersociety Energy Conversion Engineering Conference
,
Aug. 18–22
,
AIAA
,
New York
,
1,
pp.
798
803
.
20.
Iqbal
,
K. Z.
,
Fish
,
L. W.
, and
Starling
,
K. E.
,
1976
, “
Advantages of Using Mixtures as Working Fluids in Geothermal Binary Cycles
,”
Proc. Okla. Acad. Sci.
,
56
, pp.
110
113
.
21.
Hasan
,
A. A.
, and
Goswami
,
D. Y.
,
2003
, “
Exergy Analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
55
60
.
22.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
125
130
.
23.
Kalina
,
A. I.
,
1980
, “Generation of Energy by Means of a Working Fluid, and Regeneration of a Working Fluid,” U.S. Patent No. 4,346,561.
24.
Kalina
,
A. I.
,
1984
, “
Combined Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
737
742
.
25.
Hua
,
J.
,
Chen
,
Y.
,
Wang
,
Y.
, and
Roskilly
,
A. P.
,
2014
, “
Thermodynamic Analysis of Ammonia-Water Power/Chilling Cogeneration Cycle With Low Grade Waste Heat
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
483
490
.
26.
Sun
,
F.
,
Ikegami
,
Y.
,
Arima
,
H.
, and
Zhou
,
W.
,
2013
, “
Performance Analysis of the Low-Temperature Solar-Boosted Power Generation System—Part I: Comparison Between Kalina Solar System and Rankine Solar System
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011006
.
27.
Cao
,
L.
,
Wang
,
J.
,
Wang
,
H.
,
Zhao
,
P.
, and
Dai
,
Y.
,
2017
, “
Thermodynamic Analysis of a Kalina-Based Combined Cooling and Power Cycle Driven by Low-Grade Heat Source
,”
Appl. Therm. Eng.
,
111
, pp.
8
19
.
28.
Chen
,
Y.
,
Wei
,
H.
, and
Jin
,
H.
,
2017
, “
Investigation of an Ammonia-Water Combined Power and Cooling System Driven by the Jacket Water and Exhaust Heat of an Internal Combustion Engine
,”
Int. J. Refrig.
,
82
, pp.
174
188
.
29.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2018
, “
A Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina, Part I: Simulation
,”
Energy Convers. Manag.
,
158
, pp.
437
459
.
30.
Parikhani
,
T.
,
Ghaebi
,
H.
, and
Rostamzadeh
,
H.
,
2018
, “
A Novel Geothermal Combined Cooling and Power Cycle Based on the Absorption Power Cycle: Energy, Exergy, and Exergoeconomic Analysis
,”
Energy
,
153
, pp.
265
277
.
31.
Abam
,
F. I.
,
Briggs
,
T. A.
,
Diemuodeke
,
O. E.
,
Ekwe
,
E. B.
,
Ujoatuonu
,
K. N.
,
Isaac
,
J.
, and
Ndukwu
,
M. C.
,
2020
, “
Thermodynamic and Economic Analysis of a Kalina System With Integrated Lithium-Bromide-Absorption Cycle for Power and Cooling Production
,”
Energy Rep.
,
6
, pp.
1992
2005
.
32.
Zhai
,
H.
,
Dai
,
Y. J.
,
Wu
,
J. Y.
, and
Wang
,
R. Z.
,
2009
, “
Energy and Exergy Analyses on a Novel Hybrid Solar Heating, Cooling and Power Generation System for Remote Areas
,”
Appl. Energy
,
86
(
9
), pp.
1395
1404
.
33.
Kanoglu
,
M.
, and
Dincer
,
I.
,
2009
, “
Performance Assessment of Cogeneration Plants
,”
Energy Convers. Manag.
,
50
(
1
), pp.
76
81
.
34.
Eisavi
,
B.
,
Khalilarya
,
S.
,
Chitsaz
,
A.
, and
Rosen
,
M. A.
,
2018
, “
Thermodynamic Analysis of a Novel Combined Cooling, Heating and Power System Driven by Solar Energy
,”
Appl. Therm. Eng.
,
128
, pp.
1219
1229
.
35.
Khaliq
,
A.
,
Mathkar
,
M. A.
,
Alqaed
,
S.
,
Mokheimer
,
E. M. A.
, and
Kumar
,
R.
,
2020
, “
Analysis and Assessment of Tower Solar Collector Driven Trigeneration System
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051003
.
36.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2020
, “
Parametric Investigation of a Trigeneration System With an Organic Rankine Cycle and Absorption Heat Pump Driven by Parabolic Trough Collectors for the Building Sector
,”
Energies
,
13
(
7
), p.
1800
.
37.
Farshi
,
G. L.
,
Ferreira
,
C. A. I.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2014
, “
First and Second Law Analysis of Ammonia/Salt Absorption Refrigeration Systems
,”
Int. J. Refrig.
,
40
(
1–2
), pp.
111
121
.
38.
Farshi
,
G. L.
,
Mosaffa
,
A. H.
,
Ferreira
,
C. A. I.
, and
Rosen
,
M. A.
,
2014
, “
Thermodynamics Analysis of Comparison of Combined Ejector-Absorption and Single Effect Absorption Refrigeration Systems
,”
Appl. Energy
,
133
, pp.
335
346
.
39.
REFPROP
,
2013
, “
NIST Reference Thermodynamic and Transport Properties
,” version 9.1.
40.
Srinivasan
,
P. S.
,
Nandapukar
,
S. S.
, and
Holland
,
F. A.
,
1968
, “
Pressure Drop and Heat Transfer in Coils
,”
Chem. Eng.
,
9
, pp.
113
119
.
41.
Seckin
,
C.
,
2018
, “
Thermodynamic Analysis of a Combined Power/Refrigeration Cycle: Combination of Kalina Cycle and Ejector Refrigeration Cycle
,”
Energy Convers. Manag.
,
157
, pp.
631
643
.
42.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
The Performance of the Kalina Cycle System 11 (KCS-11) With Low-Temperature Heat Sources
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
243
247
.
43.
Khaliq
,
A.
,
Mokheimer
,
E. M. A.
, and
Yaqub
,
M.
,
2019
, “
Thermodynamic Investigations on a Novel Solar Powered Trigeneration Energy System
,”
Energy Convers. Manag.
,
188
, pp.
398
413
.
44.
Dhahad
,
H. A.
,
Hussen
,
H. M.
,
Nguyen
,
P. T.
,
Ghaebi
,
H.
, and
Ashraf
,
M. A.
,
2020
, “
Thermodynamic and Thermoeconomic Analysis of Innovative Integration of Kalina and Absorption Refrigeration Cycles for Simultaneously Cooling and Power Generation
,”
Energy Convers. Manag.
,
203
(
3
), p.
112241
.
You do not currently have access to this content.