Abstract

This work presents a sensitivity analysis of the overall heat loss coefficient UL and the thermal efficiency η in low and medium temperature encapsulated flat plate solar collectors when controlling the output-input temperature difference ΔT and the angle of inclination β. The UL and η were determined by heat flow calorimetry at indoor conditions, emulating the solar radiation by the Joule effect and a PID control. The angle of inclination β range was 0–90 deg, and the ΔT range was 5.0–25.0 K. The ambient temperature and the mass flowrate were preset for each test. The UL experimental uncertainty was ±0.85 W/m2K for the inclination range of 0–45 deg and ±0.27 W/m2K for the inclination range of 45–90 deg. The results matched previous outcomes with a difference of up to 0.3 W/m2K. The UL exponentially increased with β from horizontal to vertical position and linearly with ΔT. The UL and the efficiency were sensitive to the confined airflow variations. The efficiency increased 140% when β was raised and 40% with ΔT.

References

1.
Arunachala
,
U. C.
,
Siddhartha Bhatt
,
M.
, and
Sreepathi
,
L. K.
,
2015
, “
Analytical and Experimental Investigation to Determine the Variation of Hottel–Whillier–Bliss Constants for a Scaled Forced Circulation Flat-Plate Solar Water Heater
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051011
.
2.
Montoya-Marquez
,
O.
, and
Flores-Prieto
,
J.
,
2017
, “
The Effect of the Angle of Inclination on the Efficiency in a Medium-Temperature Flat Plate Solar Collector
,”
Energies
,
10
(
1
), p.
71
.
3.
Gomes
,
D. G.
, and
Fico
,
N. G. C. R.
,
2004
, “
Experimental Study of Energy Loss in Solar Energy Collectors With Wind Fences
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
1101
1104
.
4.
Cooper
,
P.
,
1981
, “
The Effect of Inclination on the Heat Loss From Flat-Plate Solar Collectors
,”
Sol. Energy
,
27
(
5
), pp.
413
420
.
5.
Tiwade
,
P. C.
, and
Pathare
,
N. R.
,
2009
, “
Experimentation and Performance Analysis on Continuous Longitudinal Fins Solar Air Heater
,”
2009 2nd International Conference on Emerging Trends in Engineering and Technology
,
Nagpur, India
,
Dec. 16–18
, pp.
1047
1051
.
6.
Javadpour
,
A.
,
Najafi
,
M.
, and
Lowrey
,
S.
,
2021
, “
Experimental Study of Natural Convection Heat Transfer From Horizontal CAM Tubes in a Vertical Array Under Constant Heat Flux
,”
J. Therm. Anal. Calorim.
7.
Garcia
,
R. P.
,
Oliveira
,
S. D. R.
, and
Scalon
,
V. L.
,
2019
, “
Thermal Efficiency Experimental Evaluation of Solar Flat Plate Collectors When Introducing Convective Barriers
,”
Sol. Energy
,
182
, pp.
278
285
.
8.
Allan
,
J.
,
Dehouche
,
Z.
,
Stankovice
,
S.
, and
Harries
,
A.
,
2017
, “
Computational Fluid Dynamics Simulation and Experimental Study of Key Design Parameters of Solar Thermal Collectors
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051001
.
9.
Montoya-Marquez
,
O.
, and
Flores-Prieto
,
J. J.
,
2015
, “
Overall Heat Loss From Both Sides of a Tilted Unglazed Solar Collector Under Indoor Conditions Using Flow Calorimetry and Thermography
,”
J. Enhanced Heat Transfer
,
22
(
6
), pp.
527
539
.
10.
Balam
,
N.
,
Alam
,
T.
, and
Gupta
,
A.
,
2021
, “
Transient Numerical Model for Natural Convection Flow in Flat Plate Solar Collector
,”
Processes
,
9
(
9
), p.
1508
.
11.
Buscalioni
,
R. D.
,
del Arco
,
E. C.
,
Bontoux
,
P.
, and
Ouazzani
,
J.
,
1998
, “
Convection and Instabilities in Differentially Heated Inclined Shallow Rectangular Boxes
,”
C. R. Acad. Sci., Ser. IIb: Mec., Phys., Astron.
,
326
(
11
), pp.
711
718
.
12.
Marroquín De Jesús
,
N.
,
Olivares-Ramírez
,
J. M.
,
Ramos-López
,
G. A.
, and
Pless
,
R. C.
,
2009
, “
A Flat Solar Collector Built From Galvanized Steel Plate, Working by Thermosyphonic Flow, Optimized for Mexican Conditions
,”
Ing., Invest. Tecnol.
,
10
(
3
), pp.
269
283
.
13.
Zambolin
,
E.
, and
del Col
,
D.
,
2010
, “
Experimental Analysis of Thermal Performance of Flat Plate and Evacuated Tube Solar Collectors in Stationary Standard and Daily Conditions
,”
Sol. Energy
,
84
(
8
), pp.
1382
1396
.
14.
LyondellBasell Industries Holdings, BV
,
2011
, “
Propylene Glycol, Specific Heat of Aqueous Propylene Glycol Solutions
,” Technical Report, 2593-V2-0511, https://www.lyondellbasell.com/globalassets/documents/chemicals-technical-literature/lyondellbasell-chemicals-technicalliterature-specific-heat-of-aqueous-propylene-glycol-solutions-2516.pdf
15.
CIE 130-1998
,
1998
, “
Practical Methods for the Measurement of Reflectance and Transmittance
,” Technical Report No. 130, Commission Internationale de L'Eclairage, Vienna, Austria, https://standards.globalspec.com/std/233884/CIE%20130
16.
ISO9050-2003
,
2003
, “
Glass in Building—Determination of Light Transmittance, Solar Direct Transmittance, Total Solar Energy Transmittance, Ultraviolet Transmittance and Related Glazing Factors
,” ISO, Vernier, Switzerland, https://www.iso.org/standard/35062.html
17.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
, “Flat-Plate Collectors,”
Solar Engineering of Thermal Processes
, 2nd ed.,
Wiley Interscience
,
Hoboken, NJ
, pp.
236
319
.
18.
Alvarado
,
R.
,
Xamán
,
J.
,
Hinojosa
,
J.
, and
Álvarez
,
G.
,
2008
, “
Interaction Between Natural Convection and Surface Thermal Radiation in Tilted Slender Cavities
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
355
368
.
19.
Seco-Nicolás
,
M.
,
Alarcón García
,
M.
, and
Luna-Abad
,
J. P.
,
2020
, “
Experimental Calculation of the Mean Temperature of Flat Plate Thermal Solar Collectors
,”
Results Eng.
,
5
, p.
100095
.
20.
ANSI/ASHRAE 93-2010 (RA 2014)
,
2014
, “
Methods of Testing to Determine the Thermal Performance of Solar Collectors
,” ASHRAE, Atlanta, GA, USA.
21.
Bava
,
F.
, and
Furbo
,
S.
,
2014
, “
Correction of Collector Efficiency Depending on Variations of Collector Type
,” Solar Collector Fluid, Volume Flow Rate and Collector Tilt. IEA-SHC Info Sheet 45.A.1. 22 December 2014.
22.
Zauner
,
C.
,
Hengstberger
,
F.
,
Hohenauer
,
W.
,
Reichl
,
C.
,
Simetzberger
,
A.
, and
Gleiss
,
G.
,
2012
, “
Methods for Medium Temperature Collector Development Applied to a CPC Collector
,”
Energy Procedia
,
30
, pp.
187
197
.
23.
Sandhu
,
G.
, and
Siddiqui
,
K.
,
2014
, “
Investigation of the Fluid Temperature Field Inside a Flat-Plate Solar Collector
,”
Heat Mass Transfer
,
50
(
11
), pp.
1499
1514
.
24.
Fan
,
J.
, and
Furbo
,
S.
,
2008
, “
Buoyancy Effects on Thermal Behavior of a Flat-Plate Solar Collector
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021010
.
25.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
ASME J. Heat Transfer-Trans. ASME
,
98
(
2
), pp.
189
193
.
26.
Klein
,
S.
,
1975
, “
Calculation of Flat-Plate Collector Loss Coefficients
,”
Sol. Energy
,
17
(
1
), pp.
79
80
.
27.
Bhatt
,
M.
,
Gaderia
,
S. N.
, and
Channiwala
,
S.
,
2011
, “
Experimental Investigations on Top Loss Coefficients of Solar Flat Plate Collector at Different Tilt Angle
,”
WASET-2011, World Academy of Science, Engineering and Technology
,
Paris, France
,
Nov. 14–16
.
28.
Gunjo
,
D. G.
,
Mahanta
,
P.
, and
Robi
,
P.
,
2017
, “
CFD and Experimental Investigation of Flat Plate Solar Water Heating System Under Steady State Condition
,”
Renewable Energy
,
106
, pp.
24
36
.
29.
Alobaid
,
M.
,
Hughes
,
B.
,
Heyes
,
A.
, and
O'Connor
,
D.
,
2018
, “
Determining the Effect of Inlet Flow Conditions on the Thermal Efficiency of a Flat Plate Solar Collector
,”
Fluids
,
3
(
3
), p.
67
.
You do not currently have access to this content.