Abstract

Solar thermochemical redox cycles provide a sustainable pathway for solar fuel processing. If done in porous (ceria) structures, they can profit from faster reaction rates owed to the enhanced heat and mass transport characteristics. However, the exact porous structure and operating conditions significantly affect the performance. We present a transient volume-averaged fixed-bed model of a thermochemical redox reactor utilizing macroporous ceria. We studied the porosity-dependent (ɛ = 0.4–0.9) and operating condition-dependent (solar concentration ratio, ratio of oxygen partial pressure to total pressure, and gas flowrate) performance of the fixed-bed ceria redox cycle. Structures with large porosity (ɛ = 0.9) showed better performance than low-porosity structures, owning to the enhanced heat absorption and resulting higher temperatures. We show that the cycle duration requires optimization according to the porosity of the structure. Two hours of operation for a structure with ɛ = 0.75 resulted in the largest hydrogen production (115.78mLgceria1) if the single cycle duration was 240 s (i.e., 30 cycles in 2 h), while nearly five times less was produced for a 15 times longer single cycle duration (i.e., two cycles in 2 h). We subsequently introduced porous structures with different types of non-uniform porosity distributions. For an average porosity of ɛ = 0.75, the most favorable non-uniform porosity media exhibited higher porosity at the boundaries and a denser core. The fuel production of the best non-uniform porous structure was six times larger compared to a uniform porous structure. Adjusting on top of this the cycling conditions, a 14.6 times production gain was achieved. This work suggests that under non-isothermal operation condition for macroporous ceria redox fixed-bed cycling, non-uniform porous structure with higher porosity boundaries and a dense core benefit fuel production and porosity-dependent cycle duration modulation can be used to increase performance.

References

1.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2009
, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
(
8
), pp.
735
739
.
2.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
3.
Zinkevich
,
M.
,
Djurovic
,
D.
, and
Aldinger
,
F.
,
2006
, “
Thermodynamic Modelling of the Cerium-Oxygen System
,”
Solid State Ionics
,
177
(
11–12
), pp.
989
1001
.
4.
Le Gal
,
A.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2011
, “
CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/Zirconia Solid Solutions
,”
Energy Fuels
,
25
(
10
), pp.
4836
4845
.
5.
Lin
,
M.
, and
Haussener
,
S.
,
2015
, “
Solar Fuel Processing Efficiency for Ceria Redox Cycling Using Alternative Oxygen Partial Pressure Reduction Methods
,”
Energy
,
88
, pp.
667
679
.
6.
Furler
,
P.
,
2014
, “
Solar Thermochemical CO2 and H2O Splitting via Ceria Redox Reactions
,”
Doctoral dissertation
.
7.
Haeussler
,
A.
,
Abanades
,
S.
,
Julbe
,
A.
,
Jouannaux
,
J.
, and
Cartoixa
,
B.
,
2020
, “
Solar Thermochemical Fuel Production From H2O and CO2 Splitting via Two-Step Redox Cycling of Reticulated Porous Ceria Structures Integrated in a Monolithic Cavity-Type Reactor
,”
Energy
,
201
, p.
117649
.
8.
Jarrett
,
C.
,
Chueh
,
W.
,
Yuan
,
C.
,
Kawajiri
,
Y.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2016
, “
Critical Limitations on the Efficiency of Two-Step Thermochemical Cycles
,”
Sol. Energy
,
123
, pp.
57
73
.
9.
Ackermann
,
S.
,
Takacs
,
M.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2017
, “
Reticulated Porous Ceria Undergoing Thermochemical Reduction With High-Flux Irradiation
,”
Int. J. Heat Mass Transfer
,
107
, pp.
439
449
.
10.
Keene
,
D. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
A Model of Transient Heat and Mass Transfer in a Heterogeneous Medium of Ceria Undergoing Nonstoichiometric Reduction
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
5
), p.
052701
.
11.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), p.
6098
.
12.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.
13.
Muhich B
,
C. L.
,
Evanko
,
W.
,
Weston
,
K. C.
,
Lichty
,
P.
,
Liang
,
X.
,
Martinek
,
J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2013
, “
Efficient Generation of H2 by Splitting Water With an Isothermal Redox Cycle
,”
Science
,
341
, pp.
540
543
.
14.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Hao
,
Y.
,
Haile
,
S. M.
, and
Davidson
,
J. H.
,
2014
, “
Efficient Splitting of CO2 in an Isothermal Redox Cycle Based on Ceria
,”
Energy Fuels
,
28
(
4
), pp.
2732
2742
.
15.
Davenport
,
T. C.
,
Yang
,
C. K.
,
Kucharczyk
,
C. J.
,
Ignatowich
,
M. J.
, and
Haile
,
S. M.
,
2016
, “
Maximizing Fuel Production Rates in Isothermal Solar Thermochemical Fuel Production
,”
Appl. Energy
,
183
, pp.
1098
1111
.
16.
Davenport
,
T. C.
,
Kemei
,
M.
,
Ignatowich
,
M. J.
, and
Haile
,
S. M.
,
2017
, “
Interplay of Material Thermodynamics and Surface Reaction Rate on the Kinetics of Thermochemical Hydrogen Production
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
16932
16945
.
17.
Davenport
,
T. C.
,
Yang
,
C. K.
,
Kucharczyk
,
C. J.
,
Ignatowich
,
M. J.
, and
Haile
,
S. M.
,
2016
, “
Implications of Exceptional Material Kinetics on Thermochemical Fuel Production Rates
,”
Energy Technol.
,
4
(
6
), pp.
764
770
.
18.
Diver
,
R. B.
,
Miller
,
J. E.
,
Siegel
,
N. P.
, and
Moss
,
T. A.
,
2010
, “
Testing of a CR5 Solar Thermochemical Heat Engine Prototype
,”
Proceedings of ASME 2010 4th International Conference on Energy Sustainability
,
Phonenix, AZ
,
May 17–20
, Vol. 2, pp.
97
104
.
19.
Roeb
,
M.
,
Neises
,
M.
,
Säck
,
J. P.
,
Rietbrock
,
P.
,
Monnerie
,
N.
,
Dersch
,
J.
,
Schmitz
,
M.
, and
Sattler
,
C.
,
2009
, “
Operational Strategy of a Two-Step Thermochemical Process for Solar Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4537
4545
.
20.
Furler
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Heat Transfer and Fluid Flow Analysis of a 4 kW Solar Thermochemical Reactor for Ceria Redox Cycling
,”
Chem. Eng. Sci.
,
137
, pp.
373
383
.
21.
Bader
,
R.
,
Bala Chandran
,
R.
,
Venstrom
,
L. J.
,
Sedler
,
S. J.
,
Krenzke
,
P. T.
,
De Smith
,
R. M.
,
Banerjee
,
A.
,
Chase
,
T. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2015
, “
Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031007
.
22.
Haeussler
,
A.
,
Abanades
,
S.
,
Jouannaux
,
J.
,
Drobek
,
M.
,
Ayral
,
A.
, and
Julbe
,
A.
,
2019
, “
Recent Progress on Ceria Doping and Shaping Strategies for Solar Thermochemical Water and CO2 Splitting Cycles
,”
AIMS Mater. Sci.
,
6
(
5
), pp.
657
684
.
23.
Pullar
,
R. C.
,
Novais
,
R. M.
,
Caetano
,
A. P. F.
,
Barreiros
,
M. A.
,
Abanades
,
S.
, and
Oliveira
,
F. A. C.
,
2019
, “
A Review of Solar Thermochemical CO2 Splitting Using Ceria-Based Ceramics With Designed Morphologies and Microstructures
,”
Front. Chem.
,
7
, p.
601
.
24.
Meng
,
Q. L.
,
Il Lee
,
C.
,
Shigeta
,
S.
,
Kaneko
,
H.
, and
Tamaura
,
Y.
,
2012
, “
Solar Hydrogen Production Using Ce1-xLixO2-δ Solid Solutions via a Thermochemical, Two-Step Water-Splitting Cycle
,”
J. Solid State Chem.
,
194
, pp.
343
351
.
25.
Jacot
,
R.
,
Naik
,
J. M.
,
Moré
,
R.
,
Michalsky
,
R.
,
Steinfeld
,
A.
, and
Patzke
,
G. R.
,
2018
, “
Reactive Stability of Promising Scalable Doped Ceria Materials for Thermochemical Two-Step CO2 Dissociation
,”
J. Mater. Chem. A
,
6
(
14
), pp.
5807
5816
.
26.
Venstrom
,
L. J.
,
Petkovich
,
N.
,
Rudisill
,
S.
,
Stein
,
A.
, and
Davidson
,
J. H.
,
2012
, “
The Effects of Morphology on the Oxidation of Ceria by Water and Carbon Dioxide
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011005
.
27.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.
28.
Takacs
,
M.
,
Ackermann
,
S.
,
Bonk
,
A.
,
Nwises-von Puttkamer
,
M.
,
Haueter
,
P.
,
Scheffe
,
J. R.
,
Vogt
,
U. F.
, and
Steinfeld
,
A.
,
2017
, “
Splitting CO2 With a Ceria-Based Redox Cycle in a Solar-Driven Thermogravimetric Analyzer
,”
AIChE J.
,
63
(
4
), pp.
1263
1271
.
29.
Keene
,
D. J.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2014
, “
The Effects of Morphology on the Thermal Reduction of Nonstoichiometric Ceria
,”
Chem. Eng. Sci.
,
111
, pp.
231
143
.
30.
Bala Chandran
,
R.
,
Bader
,
R.
, and
Lipiński
,
W.
,
2015
, “
Transient Heat and Mass Transfer Analysis in a Porous Ceria Structure of a Novel Solar Redox Reactor
,”
Int. J. Therm. Sci.
,
92
, pp.
138
149
.
31.
Bala Chandran
,
R.
, and
Davidson
,
J. H.
,
2016
, “
Model of Transport and Chemical Kinetics in a Solar Thermochemical Reactor to Split Carbon Dioxide
,”
Chem. Eng. Sci.
,
146
, pp.
302
315
.
32.
Bala Chandran
,
R.
,
De Smith
,
R. M.
, and
Davidson
,
J. H.
,
2015
, “
Model of an Integrated Solar Thermochemical Reactor/Reticulated Ceramic Foam Heat Exchanger for Gas-Phase Heat Recovery
,”
Int. J. Heat Mass Transfer
,
81
, pp.
404
414
.
33.
Roldán
,
M. I.
,
Smirnova
,
O.
,
Fend
,
T.
,
Casas
,
J. L.
, and
Zarza
,
E.
,
2014
, “
Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity
,”
Renewable Energy
,
62
, pp.
116
128
.
34.
Zhu
,
H.
,
Sankar
,
B. V.
,
Haftka
,
R. T.
,
Venkataraman
,
S.
, and
Blosser
,
M.
,
2004
, “
Optimization of Functionally Graded Metallic Foam Insulation Under Transient Heat Transfer Conditions
,”
Struct. Multidiscipl. Optim.
,
28
(
5
), pp.
349
355
.
35.
Zhan
,
Z.
,
Xiao
,
J.
,
Li
,
D.
,
Pan
,
M.
, and
Yuan
,
R.
,
2006
, “
Effects of Porosity Distribution Variation on the Liquid Water Flux Through Gas Diffusion Layers of PEM Fuel Cells
,”
J. Power Sources
,
160
(
2 SPEC. ISS.
), pp.
1041
1048
.
36.
Grigoriev
,
S. A.
,
Millet
,
P.
,
Volobuev
,
S. A.
, and
Fateev
,
V. N.
,
2009
, “
Optimization of Porous Current Collectors for PEM Water Electrolysers
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4968
4973
.
37.
Touloukian
,
Y. S.
,
1966
,
Thermophysical Properties of High Temperature Solid Materials. Volume 6. Intermetallics, Cermets, Polymers, and Composite Systems. Part 2. Cermets, Polymers, Composite Systems
,
Thermophysical and Electronic Properties Information Analysis Center
,
Lafayette
.
38.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
.
Cambridge, UK
.
39.
Binnewies
,
M.
, and
Milke
,
E.
,
2002
,
Thermochemical Data of Elements and Compounds
,
Wiley-VCH
,
Weinheim
.
40.
Chekhovskoy
,
V.
, and
Stravrovsky
,
G.
,
1970
, “
Thermal Conductivity of Cerium Dioxide
,” Akademiya Nauk SSSR, Moscow. Institut Vysokikh Temperatur.
41.
Yaws
,
C. L.
,
2014
,
Transport Properties of Chemicals and Hydrocarbons
,
William Andrew
,
New York
.
42.
Marrero
,
T.
, and
Mason
,
E. A.
,
1972
, “
Gaseous Diffusion Coefficients
,”
J. Phys. Chem. Ref. Data
,
1
(
1
), pp.
3
118
.
43.
Suter
,
S.
,
Steinfeld
,
A.
, and
Haussener
,
S.
,
2014
, “
Pore-Level Engineering of Macroporous Media for Increased Performance of Solar-Driven Thermochemical Fuel Processing
,”
Int. J. Heat Mass Transfer
,
78
, pp.
688
698
.
44.
Haussener
,
S.
, and
Steinfeld
,
A.
,
2012
, “
Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation
,”
Materials (Basel)
,
5
(
1
), pp.
192
209
.
45.
Ackermann
,
S.
,
Scheffe
,
J. R.
,
Duss
,
J.
, and
Steinfeld
,
A.
,
2014
, “
Morphological Characterization and Effective Thermal Conductivity of Dual-Scale Reticulated Porous Structures
,”
Materials (Basel)
,
7
(
11
), pp.
7173
7195
.
46.
Wang
,
P.
,
Vafai
,
K.
, and
Liu
,
D. Y.
,
2016
, “
Analysis of the Volumetric Phenomenon in Porous Beds Subject to Irradiation
,”
Numer. Heat Transfer, Part A
,
70
(
6
), pp.
567
580
.
47.
Wang
,
P.
,
Vafai
,
K.
,
Liu
,
D. Y.
, and
Xu
,
C.
,
2015
, “
Analysis of Collimated Irradiation Under Local Thermal Non-equilibrium Condition in a Packed Bed
,”
Int. J. Heat Mass Transfer
,
80
, pp.
789
801
.
48.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Bala Chandran
,
R.
,
Boman
,
D. B.
,
Krenzke
,
P. T.
, and
Davidson
,
J. H.
,
2015
, “
Applicability of an Equilibrium Model to Predict the Conversion of CO2 to CO via the Reduction and Oxidation of a Fixed Bed of Cerium Dioxide
,”
Energy Fuels
,
29
(
12
), pp.
8168
8177
.
49.
Keene
,
D. J.
,
2013
, “
Numerical Modeling of Transport Phenomena in Reactive Porous Structures for Solar Fuel Applications
,”Doctoral dissertation, Minnesota, MN.
50.
Bulfin
,
B.
,
Lowe
,
A. J.
,
Keogh
,
K. A.
,
Murphy
,
B. E.
,
Lübben
,
O.
,
Krasnikov
,
S. A.
, and
Shvets
,
I. V.
,
2013
, “
Analytical Model of CeO2 Oxidation and Reduction
,”
J. Phys. Chem. C
,
117
(
46
), pp.
24129
24137
.
51.
Bulfin
,
B.
,
Hoffmann
,
L.
,
De Oliveira
,
L.
,
Knoblauch
,
N.
,
Call
,
F.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Schmücker
,
M.
,
2016
, “
Statistical Thermodynamics of non-Stoichiometric Ceria and Ceria Zirconia Solid Solutions
,”
Phys. Chem. Chem. Phys.
,
18
(
33
), pp.
23147
23154
.
52.
Hathaway
,
B. J.
,
Bala Chandran
,
R.
,
Sedler
,
S.
,
Thomas
,
D.
,
Gladen
,
A.
,
Chase
,
T.
, and
Davidson
,
J. H.
,
2016
, “
Effect of Flow Rates on Operation of a Solar Thermochemical Reactor for Splitting CO2 via the Isothermal Ceria Redox Cycle
,”
ASME J. Sol. Energy Eng.
,
138
(
1
), p.
011007
.
You do not currently have access to this content.