Abstract

Solar technologies are an efficient means of addressing environmental pollution and climate change challenges. In this study, an organic Rankine cycle (ORC) system driven by solar evacuated glass tubes named solar water power generation (SWPG) system was experimentally investigated to explore the performance of the SWPG system in powering buildings. For ORC, a new mixture called TD-3 was introduced for the experiment after comparing the thermodynamic characteristics of five working fluids using refprop software. The solar radiation intensity was simulated for solar collectors to determine the best installation angle of the evacuated glass tubes to be 30 deg in Tianjin, China. The power generating efficiency was tested as high as 4.5% at 1:00 pm on July 15. The optimization of operating parameters and the modification of generating equipment contributed to the increase in power generation. The SWPG system could achieve an optimal power output when the system guaranteed a small superheat and no more than 3 °C subcooling using the TD-3. The transmission ratio between the generator and expander also impacted power generation that the ratio of 2:1 helped optimize the power generation.

References

1.
Building Energy Research Center of Tsinghua University
,
2020
,
Annual Report on China Building Energy Efficiency (in Chinese)
,
Architecture & Building Press
,
Beijing
.
2.
Tchanche
,
B. F.
,
Petrissans
,
M.
, and
Papadakis
,
G.
,
2014
, “
Heat Resources and Organic Rankine Cycle Machines
,”
Renew. Sustain. Energy Rev.
,
39
(
C
), pp.
1185
1199
.
3.
Zhang
,
H. F.
,
Lei
,
B.
,
Yu
,
T.
, and
Zhao
,
Z.
,
2019
, “
Form and Operation Mode Analysis of a Novel Solar-Driven Cogeneration System With Various Collector Types
,”
Int. J. Photoenergy
,
2019
, pp.
1
12
.
4.
Pehlivantürk
,
C.
,
Özkan
,
O.
, and
Baker
,
D. K.
,
2014
, “
Modeling and Simulations of a Micro Solar Power System
,”
Int. J. Energy Res.
,
38
(
9
), pp.
1129
1144
.
5.
Ramos
,
A.
,
Chatzopoulou
,
M. A.
,
Freeman
,
J.
, and
Markides
,
C. N.
,
2018
, “
Optimisation of a High-Efficiency Solar-Driven Organic Rankine Cycle for Applications in the Built Environment
,”
Appl. Energy
,
228
, pp.
755
765
.
6.
Utlu
,
Z.
,
Tolon
,
M.
, and
Karabuga
,
A.
,
2021
, “
Modelling of Energy and Exergy Analysis of ORC Integrated Systems in Terms of Sustainability by Applying Artificial Neural Network
,”
Int. J. Low Carbon Technol.
,
16
(
1
), pp.
156
164
.
7.
Freeman
,
J.
,
Hellgardt
,
K.
, and
Markides
,
C. N.
,
2017
, “
Working Fluid Selection and Electrical Performance Optimisation of a Domestic Solar-ORC Combined Heat and Power System for Year-Round Operation in the UK
,”
Appl. Energy
,
186
(
P3
), pp.
291
303
.
8.
Freeman
,
J.
,
Guarracino
,
I.
,
Kalogirou
,
S. A.
, and
Markides
,
C. N.
,
2017
, “
A Small-Scale Solar Organic Rankine Cycle Combined Heat and Power System With Integrated Thermal Energy Storage
,”
Appl. Therm. Eng.
,
127
, pp.
1543
1554
.
9.
Sonsaree
,
S.
,
Asaokab
,
T.
,
Jiajitsawat
,
S.
,
Aguirre
,
H.
, and
Tanaka
,
K.
,
2018
, “
A Small-Scale Solar Organic Rankine Cycle Power Plant in Thailand: Three Types of Non-Concentrating Solar Collectors
,”
Sol. Energy
,
162
(
1
), pp.
541
560
.
10.
Atiz
,
A.
,
Karakilcik
,
H.
,
Erden
,
M.
, and
Karakilcik
,
M.
,
2019
, “
Assessment of Electricity and Hydrogen Production Performance of Evacuated Tube Solar Collectors
,”
Int. J. Hydrogen Energy
,
44
(
27
), pp.
14137
14144
.
11.
Gu
,
W.
,
Sun
,
S. Q.
,
Weng
,
Y. W.
, and
Wang
,
Y. Z.
,
2011
, “
Experimental Study on Low Grade Heat Driven Organic Rankine Cycle by Scroll Expander
,”
Proc. CSEE
,
31
(
7
), pp.
20
25
.
12.
Wang
,
Y. P.
,
Tang
,
L.
,
Yang
,
P.
, and
Weng
,
Y. W.
,
2016
, “
Experimental Study of Influence of Solar Radiation Intensity on Organic Power Generation System
,”
Acta Energiae Sol. Sin.
,
37
(
2
), pp.
400
406
.
13.
Lv
,
S.
,
He
,
W.
,
Hu
,
D.
,
Zhu
,
J.
,
Li
,
G.
,
Chen
,
H.
, and
Liu
,
M.
,
2017
, “
Study on a High-Performance Solar Thermoelectric System for Combined Heat and Power
,”
Energy Convers. Manage.
,
143
, pp.
459
469
.
14.
He
,
Z.
,
Zhang
,
Y.
,
Dong
,
S.
,
Ma
,
H.
,
Yu
,
X.
,
Zhang
,
Y.
,
Ma
,
X.
,
Deng
,
N.
, and
Sheng
,
Y.
,
2017
, “
Thermodynamic Analysis of a Low-Temperature Organic Rankine Cycle Power Plant Operating at Off-Design Conditions
,”
Appl. Therm. Eng.
,
113
, pp.
937
951
.
15.
Baral
,
S.
, and
Kim
,
K. C.
,
2016
, “
Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal
,”
Sustainability
,
8
(
1
), p.
18
.
16.
Han
,
Z. H.
,
Ye
,
Y. L.
, and
Liu
,
Y.
,
2012
, “
Effect of Working Fluids on Performance of Solar Organic Rankine Cycles
,”
J. Power Eng.
,
32
(
3
), pp.
229
234
.
17.
Roumpedakis
,
T. C.
,
Loumpardis
,
G.
,
Monokrousou
,
E.
,
Braimakis
,
K.
,
Charalampidis
,
A.
, and
Karellas
,
S.
,
2020
, “
Exergetic and Economic Analysis of a Solar Driven Small Scale ORC
,”
Renew. Energy
,
157
, pp.
1008
1024
.
18.
Hossin
,
K.
,
Mahkamov
,
K.
, and
Belgasim
,
B.
,
2020
, “
Thermodynamic Analysis and Sizing of a Small Scale Solar Thermal Power System Based on Organic Rankine Cycle
,”
J. Sustain. Dev. Energy Water Environ. Syst.
,
8
(
3
), pp.
493
506
.
19.
Tempesti
,
D.
,
Manfrida
,
G.
, and
Fiaschi
,
D.
,
2012
, “
Thermodynamic Analysis of Two Micro CHP Systems Operating With Geothermal and Solar Energy
,”
Appl. Energy
,
97
, pp.
609
617
.
20.
Wang
,
J. L.
,
Zhao
,
L.
, and
Wang
,
X. D.
,
2010
, “
A Comparative Study of Pure and Zeotropic Mixtures in Low-Temperature Solar Rankine Cycle
,”
Appl. Energy
,
87
(
11
), pp.
3366
3373
.
21.
Mavrou
,
P.
,
Papadopoulos
,
A. I.
,
Stijepovic
,
M.
,
Seferlis
,
P.
,
Linke
,
P.
, and
Voutetakis
,
S.
,
2015
, “
Assessment of Working Fluid Mixtures for Solar Organic Rankine Cycles
,”
17th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction
,
Czech Republic
,
Aug. 23–27
, PTS 1–3, Vol. 39, pp.
283
–288
.
22.
Yan
,
Y. L.
,
Zhang
,
S. Y.
,
Ge
,
Z.
,
Xie
,
Z. Y.
,
Huang
,
G. D.
, and
Yuan
,
Z. P.
,
2021
, “
Performance Analysis of Solar Organic Rankine Cycle With Stable Output Using Cyclopentane/Cyclohexane Mixtures
,”
Fuel Cells
,
21
(
1
), pp.
66
76
.
23.
Wang
,
R. X.
,
Shen
,
Y.
,
Chen
,
Q. C.
, and
Xu
,
R. J.
,
2018
, “
Selection of Working Fluids for Solar Organic Rankine Cycle System in Different Solar Division
,”
J. Therm. Sci. Technol.
,
17
(
3
), pp.
211
218
.
24.
Theede
,
F.
, and
Luke
,
A.
,
2017
, “
Solar Driven Organic Rankine Cycle (ORC)—A Simulation Model
,”
Paper Presented at the 11th ISES EuroSun Conference
,
Palma, Spain
,
Oct. 11–14
, pp.
913
922
.
25.
Atiz
,
A.
,
Karakilcik
,
H.
,
Erden
,
M.
, and
Karakilcik
,
M.
,
2019
, “
Investigation Energy, Exergy and Electricity Production Performance of an Integrated System Based on a Low-Temperature Geothermal Resource and Solar Energy
,”
Energy Convers. Manage.
,
195
, pp.
798
809
.
26.
Freeman
,
J.
,
Hellgardt
,
K.
, and
Markides
,
C. N.
,
2015
, “
An Assessment of Solar-Powered Organic Rankine Cycle Systems for Combined Heating and Power in UK Domestic Applications
,”
Appl. Energy
,
138
, pp.
605
620
.
27.
Zheng
,
N.
,
Wei
,
J.
, and
Zhao
,
L.
,
2018
, “
Analysis of a Solar Rankine Cycle Powered Refrigerator With Zeotropic Mixtures
,”
Sol. Energy
,
162
, pp.
57
66
.
28.
Cioccolanti
,
L.
,
Tascioni
,
R.
,
Bocci
,
E.
, and
Villarini
,
M.
,
2018
, “
Parametric Analysis of a Solar Organic Rankine Cycle Trigeneration System for Residential Applications
,”
Energy Convers. Manage.
,
163
, pp.
407
419
.
29.
Sheng
,
Z. J.
,
Huai
,
W. X.
, and
Tao
,
G.
,
2010
, “
Experimental Investigation of Moderately High Temperature Water Source Heat Pump With Non-Azeotropic Refrigerant Mixtures
,”
Energy
,
87
(
5
), pp.
1554
1561
.
30.
Defibaugh
,
D. R.
, and
Morrison
,
G.
,
1995
, “
Interaction Coefficients for 15 Mixtures of Flammable and Non-Flammable Components
,”
Int. J. Refrig.
,
18
(
8
), pp.
518
523
.
31.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.
32.
Nasir
,
M. T.
,
Ali
,
M. A.
,
Khan
,
T. S.
,
Al-Hajri
,
E.
,
Kadri
,
M. B.
, and
Kim
,
K. C.
,
2019
, “
Performance Assessment and Multi Objective Optimization of an Organic Rankine Cycle Driven Cooling Air Conditioning System
,”
Energy Build.
,
191
, pp.
13
30
.
33.
Thurairaja
,
K.
,
Wijewardane
,
A.
,
Jayasekara
,
S.
, and
Ranasinghe
,
C.
,
2019
, “
Working Fluid Selection and Performance Evaluation of ORC
,”
Energy Procedia
,
156
, pp.
244
248
.
34.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2013
, “
Optimal Collector Type and Temperature in a Solar Organic Rankine Cycle System for Building-Scale Power Generation in Hot and Humid Climate
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011012
.
35.
Nguyen
,
V. M.
,
Doherty
,
P. S.
, and
Riffat
,
S. B.
,
2001
, “
Development of a Prototype Low-Temperature Rankine Cycle Electricity Generation System
,”
Appl. Therm. Eng.
,
21
(
2
), pp.
169
181
.
36.
Botsaris
,
P. N.
,
Pechtelidis
,
A. G.
, and
Lymperopoulos
,
K. A.
,
2019
, “
Modeling, Simulation, and Performance Evaluation Analysis of a Parabolic Trough Solar Collector Power Plant Coupled to an Organic Rankine Cycle Engine in North Eastern Greece Using TRNSYS
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061004
.
37.
Li
,
J.
,
Liu
,
Q.
,
Ge
,
Z.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2017
, “
Thermodynamic Performance Analyses and Optimization of Subcritical and Transcritical Organic Rankine Cycles Using R1234ze(E) for 100–200 Degrees C Heat Sources
,”
Energy Convers. Manage.
,
149
(
10
), pp.
140
154
.
38.
Sunter
,
D. A.
, and
Carey
,
V. P.
,
2010
, “
A Thermodynamic Similarity Framework for Assessment of Working Fluids for Solar Rankine Power Generation
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041005
.
39.
Borsukiewicz-Gozdur
,
A.
,
2013
, “
Experimental Investigation of R227ea Applied as Working Fluid in the ORC Power Plant With Hermetic Turbogenerator
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
126
133
.
40.
Bu
,
X. B.
,
Liu
,
X.
,
Li
,
H. S.
,
Wang
,
H. Z.
, and
Wang
,
L. B.
,
2018
, “
Effects of the Heat Transfer Capacity of Heat Exchangers on the Performance of Organic Rankine Cycle
,”
J. Harbin Eng. Univ.
,
39
(
8
), pp.
1302
1307
.
41.
Sachdeva
,
J.
, and
Singh
,
O.
,
2020
, “
Comparative Evaluation of Solarized Triple Combined Cycle for Different ORC Fluids
,”
Renew. Energy
,
163
, pp.
1333
1342
.
42.
Abas
,
N.
,
Nawaz
,
R.
, and
Khan
,
N.
,
2015
, “
Parametric Quantification of Low GWP Refrigerant for Thermosyphon Driven Solar Water Heating System
,”
Procedia Comput. Sci.
,
52
(
1
), pp.
804
811
.
43.
Abas
,
N.
,
Kalair
,
A. R.
,
Khan
,
N.
,
Haider
,
A.
,
Saleem
,
Z.
, and
Saleem
,
M. S.
,
2018
, “
Natural and Synthetic Refrigerants, Global Warming: A Review
,”
Renew. Sustain. Energy Rev.
,
90
(
C
), pp.
557
569
.
44.
Wang
,
Y. P.
,
Ding
,
X. Y.
,
Tang
,
L.
, and
Weng
,
Y. W.
,
2016
, “
Effect of Evaporation Temperature on the Performance of Organic Rankine Cycle in Near-Critical Condition
,”
ASME J. Sol. Energy Eng.
,
138
(
3
), p.
032001
.
45.
Mu
,
Y. C.
,
Zhang
,
Y. F.
,
Deng
,
N.
, and
Nie
,
J. Z.
,
2015
, “
Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle
,”
J. Energy Eng.
,
141
(
3
), p.
04014017
.
You do not currently have access to this content.