Abstract

For organometallic halide solar cells (OHSC), it is expected that their performance in hot climates is to be challenged by high operating temperature conditions typical of these regions. This study explores, for the first time, the performance of formamidinium tin iodide (FASnI3) solar cells under variations of seasonal and climatic conditions in Nigeria using a non-steady- state thermal model. From the thermal analysis, results show that the air temperature in the location of the solar cell under study played a significant role in the increase and decrease of the rate of the overall heat transfer coefficient of the OHSC. However, the cell temperature depended on the rate of heat loss and the solar radiation absorbed by the OHSC. The electrical analysis was based on the numerical simulation of a FASnI3 solar cell with the aid of a Solar Cell Capacitance Simulator (SCAPS). A decrease in the power conversion efficiency (PCE) as the cell temperature increased was observed. Overall, while the OHSC suffered losses in efficiency in all locations during the hot season, the wet season saw an improvement in the PCE, especially in Twon-Brass (0.5% increase) where the most heat loss and least insolation were recorded. This shows that the power conversion efficiency of an operating OHSC is temperature-dependent, rather than the abundance of solar irradiance.

References

1.
Jiang
,
Q.
,
Tong
,
J.
,
Xian
,
Y.
,
Kerner
,
R. A.
,
Dunfield
,
S. P.
,
Xiao
,
C.
,
Scheidt
,
R. A.
, et al
,
2022
, “
Surface Reaction for Efficient and Stable Inverted Perovskite Solar Cells
,”
Nature
,
611
(
7935
), pp.
278
283
.
2.
Giwa
,
A.
,
Alabi
,
A.
,
Yusuf
,
A.
, and
Olukan
,
T.
,
2017
, “
A Comprehensive Review on Biomass and Solar Energy for Sustainable Energy Generation in Nigeria
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
620
641
.
3.
Berhe
,
T. A.
,
Su
,
W.-N.
,
Chen
,
C.-H.
,
Pan
,
C.-J.
,
Cheng
,
J.-H.
,
Hung-Chen
,
M.
, et al
,
2016
, “
Organometal Halide Perovskite Solar Cells: Degradation and Stability
,”
Energy Environ. Sci.
,
9
(
2
), pp.
323
356
.
4.
Lopez-varo
,
P.
,
Amara
,
M.
,
Cacovich
,
S.
,
Julien
,
A.
,
Yaiche
,
A.
,
Jouhari
,
M.
,
Rousset
,
J.
,
Schulz
,
P.
,
Guillemoles
,
J.-F.
, and
Puel
,
J.-B.
,
2022
, “
Dynamic Temperature Effects in Perovskite Solar Cells and Energy Yield
,”
Sustainable Energy Fuels
,
5
(
21
), pp.
5523
5534
.
5.
Meng
,
L.
,
You
,
J.
, and
Yang
,
Y.
,
2018
, “
Addressing the Stability Issue of Perovskite Solar Cells for Commercial Applications
,”
Nat. Commun.
,
9
(
1
), p.
5265
.
6.
Mesquita
,
I.
,
Andrade
,
L.
, and
Mendes
,
A.
,
2019
, “
Temperature Impact on Perovskite Solar Cells Under Operation
,”
ChemSusChem
,
12
(
10
), pp.
2186
2194
.
7.
Duffie
,
J. A.
,
Beckman
,
W. A.
, and
Worek
,
W. M.
,
1994
, “
Solar Engineering of Thermal Processes, 2nd ed
,”
ASME J. Sol. Energy Eng.
,
116
(
1
), pp.
67
68
.
8.
Jones
,
A. D.
, and
Underwood
,
C. P.
,
2001
, “
A Thermal Model for Photovoltaic Systems
,”
Sol. Energy
,
70
(
4
), pp.
349
359
.
9.
Mattei
,
M.
,
Notton
,
G.
,
Cristofari
,
C.
,
Muselli
,
M.
, and
Poggi
,
P.
,
2006
, “
Calculation of the Polycrystalline PV Module Temperature Using a Simple Method of Energy Balance
,”
Renewable Energy
,
31
(
4
), pp.
553
567
.
10.
Torres Lobera
,
D.
, and
Valkealahti
,
S.
,
2013
, “
Dynamic Thermal Model of Solar PV Systems Under Varying Climatic Conditions
,”
Sol. Energy
,
93
, pp.
183
194
.
11.
Appelbaum
,
J.
, and
Maor
,
T.
,
2020
, “
Dependence of pv Module Temperature on Incident Time-Dependent Solar Spectrum
,”
Appl. Sci.
,
10
(
3
), p.
914
.
12.
Rajput
,
P.
,
Shyam, Tomar
,
V.
,
Tiwari
,
G. N.
,
Sastry
,
O. S.
, and
Bhatti
,
T. S.
,
2018
, “
A Thermal Model for N Series Connected Glass/Cell/Polymer Sheet and Glass/Cell/Glass Crystalline Silicon Photovoltaic Modules With Hot Solar Cells Connected in Series and Its Thermal Losses in Real Outdoor Condition
,”
Renewable Energy
,
126
, pp.
370
386
.
13.
Akinyele
,
D. O.
,
Rayudu
,
R. K.
, and
Nair
,
N. K. C.
,
2015
, “
Global Progress in Photovoltaic Technologies and the Scenario of Development of Solar Panel Plant and Module Performance Estimation—Application in Nigeria
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
112
139
.
14.
Tan
,
R. H. G.
, and
Mok
,
V. H.
,
2014
, “
A Simplified Approach for Fundamental Photovoltaic Module Performance Analysis
,”
Proceedings of the 2014 IEEE Innovative Smart Grid Technologies—Asia, ISGT ASIA 2014
,
Kuala Lumpur, Malaysia
,
May 20–23
, IEEE, pp.
703
708
.
15.
NiMet
,
2021
, State of the Climate in Nigeria 2021, Abuja, Nigeria. www.nimet.gov.ng
16.
Abdelaziz
,
S.
,
Zekry
,
A.
,
Shaker
,
A.
, and
Abouelatta
,
M.
,
2020
, “
Investigating the Performance of Formamidinium Tin-Based Perovskite Solar Cell by SCAPS Device Simulation
,”
Opt. Mater.
,
101
, p.
109738
.
17.
Koh
,
T. M.
,
Krishnamoorthy
,
T.
,
Yantara
,
N.
,
Shi
,
C.
,
Leong
,
W. L.
,
Boix
,
P. P.
,
Grimsdale
,
A. C.
,
Mhaisalkar
,
S. G.
, and
Mathews
,
N.
,
2015
, “
Formamidinium Tin-Based Perovskite With Low Eg for Photovoltaic Applications
,”
J. Mater. Chem. A
,
3
(
29
), pp.
14996
15000
.
18.
Roy
,
P.
,
Tiwari
,
S.
, and
Khare
,
A.
,
2021
, “
An Investigation on the Influence of Temperature Variation on the Performance of Tin (Sn) Based Perovskite Solar Cells Using Various Transport Layers and Absorber Layers
,”
Results Opt.
,
4
, p.
100083
.
19.
Kalogirou
,
S. A.
,
2009
,
Solar Energy Engineering Process and Systems
,
Academic Press
,
Burlington, MA
, p.
779
.
20.
Kreith
,
F.
,
Pepper
,
D. W.
,
Sherif
,
S. A.
,
Goswami
,
D. Y.
,
Stefanakos
,
E. K.
, and
Steinfeld
,
A.
,
2016
,
Energy Efficiency and Renewable Energy Handbook
,
CRC Press
,
Boca Raton, FL
, p.
1822
21.
Klein
,
S. A.
,
1975
, “
Calculation of Flat-Plate Collector Loss Coefficients
,”
Sol. Energy
,
17
(
1
), pp.
79
80
.
22.
Ceylan
İ
,
Yilmaz
S
,
İnanç
Ö
,
Ergün
A
,
Gürel
AE
,
Acar
B
, and
İlker Aksu
,
A.
,
2019
, “
Determination of the Heat Transfer Coefficient of PV Panels
,”
Energy
,
175
, pp.
978
985
.
23.
Basyoni
,
M. S. S.
,
Salah
,
M. M.
,
Mousa
,
M.
,
Shaker
,
A.
,
Zekry
,
A.
,
Abouelatta
,
M.
,
Al-Dhlan
,
K. A.
, and
Gontrand
,
C.
,
2021
, “
On the Investigation of Interface Defects of Solar Cells: Lead-Based vs Lead-Free Perovskite
,”
IEEE Access
,
9
, pp.
130221
130232
.
24.
Danladi
,
E.
,
Gyuk
,
P. M.
,
Tasie
,
N. N.
,
Egbugha
,
A. C.
,
Behera
,
D.
,
Hossain
,
I.
,
Bagudo
,
I. M.
,
Madugu
,
M. L.
, and
Ikyumbur
,
J. T.
,
2023
, “
Impact of Hole Transport Material on Perovskite Solar Cells With Different Metal Electrode: A SCAPS-1D Simulation Insight
,”
Heliyon
,
9
(
6
), p.
e16838
.
25.
Huld
,
T.
,
Müller
,
R.
, and
Gambardella
,
A.
,
2012
, “
A New Solar Radiation Database for Estimating PV Performance in Europe and Africa
,”
Sol. Energy
,
86
(
6
), pp.
1803
1815
.
26.
Tara
,
A.
,
Bharti
,
V.
,
Sharma
,
S.
, and
Gupta
,
R.
,
2021
, “
Device Simulation of FASnI3 Based Perovskite Solar Cell with Zn(O0.3, S0.7) as Electron Transport Layer Using SCAPS-1D
,”
Opt. Mater.
,
119
, p.
111362
.
27.
Danladi
,
E.
,
Egbugha
,
A. C.
,
Obasi
,
R. C.
,
Tasie
,
N. N.
,
Achem
,
C. U.
,
Haruna
,
I. S.
, and
Ezeh
,
L. O.
,
2023
, “
Defect and Doping Concentration Study With Series and Shunt Resistance Influence on Graphene Modified Perovskite Solar Cell: A Numerical Investigation in SCAPS-1D Framework
,”
J. Indian Chem. Soc.
,
100
(
5
), p.
101001
.
28.
Chandel
,
R.
,
Punetha
,
D.
,
Dhawan
,
D.
, and
Gupta
,
N.
,
2022
, “
Optimization of Highly Efficient and Eco-Friendly EA-Substituted Tin Based Perovskite Solar Cell With Different Hole Transport Material
,”
Opt. Quantum Electron.
,
54
(
6
), p.
337
.
29.
Lenka
,
T. R.
,
Soibam
,
A. C.
,
Dey
,
K.
,
Maung
,
T.
, and
Lin
,
F.
,
2020
, “
Numerical Analysis of High-Efficiency Lead-Free Perovskite Solar Cell With NiO as Hole Transport Material and PCBM as Electron Transport Material
,”
CSI Trans. ICT
,
8
(
2
), pp.
111
116
.
30.
Li
,
S.
,
Liu
,
P.
,
Pan
,
L.
,
Li
,
W.
,
Yang
,
S. E.
,
Shi
,
Z.
,
Guo
,
H.
,
Xia
,
T.
,
Zhang
,
S.
, and
Chen
,
Y.
,
2019
, “
The Investigation of Inverted p-i-n Planar Perovskite Solar Cells Based on FASnI3 Films
,”
Sol. Energy Mater. Sol. Cells
,
199
, pp.
75
82
.
31.
Duha
,
A. U.
, and
Borunda
,
M. F.
,
2022
, “
Optimization of a Pb-Free All-Perovskite Tandem Solar Cell With 30.85% Efficiency
,”
Opt. Mater.
,
123
, p.
111891
.
32.
Singh
,
N.
,
Agarwal
,
A.
, and
Agarwal
,
M.
,
2021
, “
Numerical Simulation of Highly Efficient Lead-Free Perovskite Layers for the Application of All-Perovskite Multi-Junction Solar Cell
,”
Superlattices Microstruct.
,
149
, p.
106750
.
33.
Khanna
,
S.
,
Sundaram
,
S.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2017
, “
Performance Analysis of Perovskite and Dye-Sensitized Solar Cells Under Varying Operating Conditions and Comparison With Monocrystalline Silicon Cell
,”
Appl. Therm. Eng.
,
127
, pp.
559
565
.
34.
Sundén
,
B.
,
2012
,
Introduction to Heat Transfer
,
WIT Press
,
Lund, Sweden
, p.
344
. https://www.witpress.com/books/978-1-84564-656-1
35.
Petrana
,
S.
,
Setiawan
,
E. A.
, and
Januardi
,
A.
,
2018
, “
Solar Panel Performance Analysis Under Indonesian Tropic Climate Using Sandia PV Array Performance Model and Five Parameter Performance Model
,”
Proceedings of the E3S Web of Conferences
,
Kuta, Bali, Indonesia
,
Sept. 6–8
, p.
02048
.
36.
Zhang
,
H.
,
Qiao
,
X.
,
Shen
,
Y.
, and
Wang
,
M.
,
2015
, “
Effect of Temperature on the Efficiency of Organometallic Perovskite Solar Cells
,”
J. Energy Chem.
,
24
(
6
), pp.
729
735
.
37.
Zyoud
,
S. H.
,
Zyoud
,
A. H.
,
Abdelkader
,
A.
, and
Ahmed
,
N. M.
,
2021
, “
Numerical Simulation for Optimization of Znte-Based Thin-Film Heterojunction Solar Cells With Different Metal Chalcogenide Buffer Layers Replacements: Scaps-1d Simulation Program
,”
Int. Rev. Modell. Simul.
,
14
(
2
), pp.
79
88
.
You do not currently have access to this content.