Abstract

For large-scale constructed wind farms, reducing wake loss and improving the overall output power are the main objectives for their optimal operation. Therefore, a wind farm power maximization method based on a multi-strategy improved sparrow search algorithm (MS-ISSA) is proposed in this paper. Integrating the wake propagation mechanism of wind turbines and the characteristics of the classic Jensen wake model, the Jensen–Gaussian wake model and wake superposition model were constructed to accurately calculate the wind farm wake distribution. The constructed Jensen–Gaussian wake model and wake superposition model can accurately describe the non-uniform distribution characteristics of wake velocity. The Sin chaotic model, Cauchy distribution, and hyperparameter adaptive adjustment strategy were used to improve the sparrow search algorithm (SSA), and the optimization ability, convergence speed, and stability of the SSA were improved. Accordingly, considering the maximum output power of the wind farm as the optimization target and axial induction factor as the optimization variable, a coordinated optimization model for wind turbines based on MS-ISSA was proposed to realize the coordinated optimal operation of wind turbines with reduced wake loss. Considering the Danish Horns Rev wind farm as the research object, the results of optimization using particle swarm optimization algorithm, whale optimization algorithm, basic sparrow search algorithm, and MS-ISSA were calculated and analyzed. The calculation results revealed that under different incoming wind conditions, the MS-ISSA exhibited better optimization results than the other optimization algorithms.

References

2.
Lundquist
,
J. K.
,
Duvivier
,
K. K.
,
Kaffine
,
D.
, and
Tomaszewski
,
J. M.
,
2019
, “
Costs and Consequences of Wind Turbine Wake Effects Arising From Uncoordinated Wind Energy Development
,”
Nat. Energy
,
4
(
3
), pp.
251
251
.
3.
Sun
,
H. Y.
,
Gao
,
X. X.
, and
Yang
,
H. X.
,
2020
, “
A Review of Full-Scale Wind-Field Measurements of the Wind-Turbine Wake Effect and a Measurement of the Wake-Interaction Effect
,”
Renewable Sustainable Energy Rev.
,
132
, p.
110042
.
4.
Azlan
,
F.
,
Kurnia
,
J. C.
,
Tan
,
B. T.
, and
Ismadi
,
M. Z.
,
2021
, “
Review on Optimization Methods of Wind Farm Array Under Three Classical Wind Condition Problems
,”
Renewable Sustainable Energy Rev.
,
135
, p.
110047
.
5.
Archer
,
C. L.
,
Vasel-Be-Hagh
,
A.
,
Yan
,
C.
,
Wu
,
S.
,
Pan
,
Y.
,
Brodie
,
J. F.
, and
Maguire
,
A. E.
,
2018
, “
Review and Evaluation of Wake Loss Models for Wind Energy Applications
,”
Appl. Energy
,
226
, pp.
1187
1207
.
6.
Veers
,
P.
,
Dykes
,
K.
,
Lantz
,
E.
,
Barth
,
S.
,
Bottasso
,
C.
,
Carlson
,
O.
,
Clifton
,
A.
, et al
,
2019
, “
Grand Challenges in the Science of Wind Energy
,”
Science
,
366
(
6464
), pp.
443
453
.
7.
Andersson
,
L. E.
,
Anaya-Lara
,
O.
,
Tande
,
J. O.
,
Merz
,
K. O.
, and
Imsland
,
L.
,
2021
, “
Wind Farm Control—Part I: A Review on Control System Concepts and Structures
,”
IET Renewable Power Gener.
,
15
(
10
), pp.
2085
2108
.
8.
Houck
,
D. R.
,
2022
, “
Review of Wake Management Techniques for Wind Turbines
,”
Wind Energy
,
25
(
2
), pp.
195
220
.
9.
Kheirabadi
,
A. C.
, and
Nagamune
,
R.
,
2019
, “
A Quantitative Review of Wind Farm Control With the Objective of Wind Farm Power Maximization
,”
J. Wind Eng. Ind. Aerodyn.
,
192
, pp.
45
73
.
10.
Nash
,
R.
,
Nouri
,
R.
, and
Vasel-Be-Hagh
,
A.
,
2021
, “
Wind Turbine Wake Control Strategies: A Review and Concept Proposal
,”
Energy Convers. Manage.
,
245
, p.
114581
.
11.
Schepers
,
J. G.
, and
Vanderpijl
,
S. P.
,
2007
, “
Improved Modelling of Wake Aerodynamics and Assessment of New Farm Control Strategies
,”
J. Phys.: Conf. Ser.
,
75
(
1
), pp.
12039
12046
.
12.
Abedi
,
H.
,
Nebenführ
,
B.
, and
Davidson
,
L.
,
2022
, “
Assessment of Wind Field Generation Methods on Predicted Wind Turbine Power Production Using a Free Vortex Filament Wake Approach
,”
ASME. J. Sol. Energy Eng.
,
144
(
2
), p.
021010
.
13.
Marden
,
J. R.
,
Ruben
,
S. D.
, and
Pao
,
L. Y.
,
2013
, “
A Model-Free Approach to Wind Farm Control Using Game Theoretic Methods
,”
IEEE Trans Control Syst. Technol.
,
21
(
4
), pp.
1207
1214
.
14.
Gebraad
,
P. M. O.
, and
van Wingerden
,
J. W
,
2014
, “
Maximum Power-Point Tracking Control for Wind Farms
,”
Wind Energy
,
18
(
3
), pp.
429
447
.
15.
Behnood
,
A.
,
Gharavi
,
H.
,
Vahid
,
B.
, and
Riahy
,
G. H.
,
2014
, “
Optimal Output Power of not Properly Designed Wind Farms, Considering Wake Effects
,”
Int. J. Electr. Power Energy Syst.
,
63
(
12
), pp.
44
50
.
16.
Gu
,
B.
,
2016
,
Wake Fast-Calculation and Power Optimal Dispatch for Wind Farms
,
North China Electric Power University
,
Beijing
.
17.
Bo
,
G.
,
Yongqian
,
L.
,
Jie
,
Y.
,
Li
,
L.
, and
Shun
,
K.
,
2016
, “
A Wind Farm Optimal Control Algorithm Based on Wake Fast-Calculation Model
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
024501
.
18.
Gu
,
B.
,
Zhang
,
Y.
,
Ren
,
Y.
, and
Liu
,
Y.
,
2017
, “
Wake Distribution Calculation and Optimization Control Method for Wind Farms
,”
Autom. Electr. Power Syst.
,
41
(
18
), pp.
124
129
.
19.
van der Hoek
,
D
,
Kanev
,
S.
,
Allin
,
J.
,
Bieniek
,
D.
, and
Mittelmeier
,
N.
,
2019
, “
Effects of Axial Induction Control on Wind Farm Energy Production—A Field Test
,”
Renewable Energy
,
140
, pp.
994
1003
.
20.
Gionfra
,
N.
,
Sandou
,
G.
,
Siguerdidjane
,
H.
,
Faille
,
D.
, and
Loevenbruck
,
P.
,
2019
, “
Wind Farm Distributed PSO-Based Control for Constrained Power Generation Maximization
,”
Renewable Energy
,
133
, pp.
103
117
.
21.
Yin
,
X. X.
, and
Zhao
,
X. W.
,
2021
, “
Data Driven Learning Model Predictive Control of Offshore Wind Farms
,”
Int. J. Electr. Power Energy Syst.
,
127
, p.
106639
.
22.
Qian
,
G. W.
, and
Ishihara
,
T.
,
2021
, “
Wind Farm Power Maximization Through Wake Steering With a New Multiple Wake Model for Prediction of Turbulence Intensity
,”
Energy
,
220
, p.
119680
.
23.
González
,
J. S.
,
Payán
,
M. B.
,
Santos
,
J. R.
, and
Rodríguez
,
A. G. G.
,
2015
, “
Maximizing the Overall Production of Wind Farms by Setting the Individual Operating Point of Wind Turbines
,”
Renewable Energy
,
80
, pp.
219
229
.
24.
Doekemeijer
,
B. M.
,
van der Hoek
,
D
, and
van Wingerden
,
J. W
,
2021
, “
Closed-Loop Model-Based Wind Farm Control Using FLORIS Under Time-Varying Inflow Conditions
,”
Renewable Energy
,
156
, pp.
719
730
.
25.
Fleming
,
P. A.
,
Ning
,
A.
,
Gebraad
,
P. M. O.
, and
Dykes
,
K.
,
2016
, “
Wind Plant System Engineering Through Optimization of Layout and Yaw Control
,”
Wind Energy
,
19
(
2
), pp.
329
344
.
26.
van Dijk
,
M. T
,
van Wingerden
,
J. W.
,
Ashuri
,
T.
, and
Li
,
Y. Y.
,
2017
, “
Wind Farm Multi-Objective Wake Redirection for Optimizing Power Production and Loads
,”
Energy
,
121
, pp.
561
569
.
27.
Park
,
J.
, and
Law
,
K. H.
,
2015
, “
Cooperative Wind Turbine Control for Maximizing Wind Farm Power Using Sequential Convex Programming
,”
Energy Convers. Manage.
,
101
, pp.
295
316
.
28.
Park
,
J.
, and
Law
,
K. H.
,
2016
, “
A Data-Driven, Cooperative Wind Farm Control to Maximize the Total Power Production
,”
Appl. Energy
,
165
, pp.
151
165
.
29.
Sree Raj
,
V.
,
Solanki
,
R. S.
,
Chalamalla
,
V. K.
, and
Sinha
,
S. S.
,
2024
, “
Evaluation of the Performance of Twin Rotor Vertical Axis Wind Turbines Employing Large Eddy Simulations
,”
ASME. J. Sol. Energy Eng.
,
146
(
1
), p.
011006
.
30.
Gebraad
,
P. M. O.
,
Teeuwisse
,
F. W.
,
Van Wingerden
,
J. W.
,
Fleming
,
P. A.
,
Ruben
,
S. D.
,
Marden
,
J. R.
, and
Pao
,
L. Y.
,
2016
, “
Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects—A CFD Simulation Study
,”
Wind Energy
,
19
(
1
), pp.
95
114
.
31.
Gebraad
,
P. M. O.
, and
van Wingerden
,
J. W.
,
2015
, “
Maximum Power-Point Tracking Control for Wind Farms
,”
Wind Energy
,
18
(
3
), pp.
429
447
.
32.
Wang
,
Y. B.
,
Miao
,
W. P.
,
Ding
,
Q. W.
,
Li
,
C.
, and
Xiang
,
B.
,
2019
, “
Numerical Investigations on Control Strategies of Wake Deviation for Large Wind Turbines in an Offshore Wind Farm
,”
Ocean Eng.
,
173
, pp.
794
801
.
33.
Dou
,
B. Z.
,
Qu
,
T. M.
,
Lei
,
L. P.
, and
Zeng
,
P.
,
2020
, “
Optimization of Wind Turbine Yaw Angles in a Wind Farm Using a Three-Dimensional Yawed Wake Model
,”
Energy
,
209
p.
118415
.
34.
Vali
,
M.
,
Petrovic
,
V.
,
Boersma
,
S.
,
van Wingerden
,
J. W.
,
Pao
,
L. Y.
, and
Kühn
,
M.
,
2019
, “
Adjoint-based Model Predictive Control for Optimal Energy Extraction in Waked Wind Farms
,”
Control Eng. Pract.
,
84
, pp.
48
62
. 1016/j.conengprac.2018.11.005
35.
Kanev
,
S.
,
2020
, “
Dynamic Wake Steering and Its Impact on Wind Farm Power Production and Yaw Actuator Duty
,”
Renewable Energy
,
146
, pp.
9
15
.
36.
Siniscalchi-Minna
,
S.
,
Bianchi
,
F. D.
,
Ocampo-Martinez
,
C.
,
Domínguez-García
,
J. L.
, and
Schutter
,
B. D.
,
2020
, “
A Non-Centralized Predictive Control Strategy for Wind Farm Active Power Control: A Wake-Based Partitioning Approach
,”
Renewable Energy
,
150
, pp.
656
669
.
37.
Astolfi
,
D.
,
Castellani
,
F.
, and
Natili
,
F.
,
2021
, “
Data-Driven Methods for the Analysis of Wind Turbine Yaw Control Optimization
,”
ASME. J. Sol. Energy Eng.
,
143
(
1
), p.
014501
.
38.
Padullaparthi
,
V. R.
,
Nagarathinam
,
S.
,
Vasan
,
A.
,
Menon
,
V.
, and
Sudarsanam
,
D.
,
2022
, “
FALCON—FArm Level CONtrol for Wind Turbines Using Multi-Agent Deep Reinforcement Learning
,”
Renewable Energy
,
181
, pp.
445
456
.
39.
Dong
,
H. Y.
,
Zhang
,
J. C.
, and
Zhao
,
X. W.
,
2021
, “
Intelligent Wind Farm Control via Deep Reinforcement Learning and High-Fidelity Simulations
,”
Appl. Energy
,
292
, p.
116928
.
40.
Gu
,
B.
,
Meng
,
H.
,
Ge
,
M. W.
,
Zhang
,
H. T.
, and
Liu
,
X. Y.
,
2021
, “
Cooperative Multiagent Optimization Method for Wind Farm Power Delivery Maximization
,”
Energy
,
233
(
3
), p.
121076
.
41.
Song
,
M. X.
,
Chen
,
K.
, and
Wang
,
J.
,
2018
, “
Three-Dimensional Wind Turbine Positioning Using Gaussian Particle Swarm Optimization With Differential Evolution
,”
J. Wind Eng. Ind. Aerodyn.
,
172
, pp.
317
324
.
42.
Guirguis
,
D.
,
Romero
,
D. A.
, and
Amon
,
C. H.
,
2016
, “
Toward Efficient Optimization of Wind Farm Layouts: Utilizing Exact Gradient Information
,”
Appl. Energy
,
179
, pp.
110
123
.
43.
Ju
,
X. L.
, and
Liu
,
F.
,
2019
, “
Wind Farm Layout Optimization Using Self-Informed Genetic Algorithm with Information Guided Exploitation
,”
Appl. Energy
,
248
, pp.
429
445
.
44.
Moreno
,
S. R.
,
Pierezan
,
J.
,
Coelho
,
L. D.
, and
Mariani
,
V. C.
,
2021
, “
Multi-objective Lightning Search Algorithm Applied to Wind Farm Layout Optimization
,”
Energy
,
216
, p.
119214
.
45.
Patel
,
J.
,
Savsani
,
V.
,
Patel
,
V.
, and
Patel
,
R.
,
2017
, “
Layout Optimization of a Wind Farm to Maximize the Power Output Using Enhanced Teaching Learning Based Optimization Technique
,”
J. Cleaner Prod.
,
158
, pp.
81
94
.
46.
Mittal
,
P.
, and
Mitra
,
K.
,
2018
, “
Determining Layout of a Wind Farm With Optimal Number of Turbines: A Decomposition Based Approach
,”
J. Cleaner Prod.
,
202
, pp.
342
359
.
47.
Nagpal
,
S. V.
,
Liu
,
M. V.
, and
Anderson
,
C. L.
,
2021
, “
A Comparison of Deterministic Refinement Techniques for Wind Farm Layout Optimization
,”
Renewable Energy
,
168
, pp.
581
592
.
48.
Chen
,
Y.
,
Li
,
H.
,
Jin
,
K.
, and
Song
,
Q.
,
2013
, “
Wind Farm Layout Optimization Using Genetic Algorithm With Different Hub Height Wind Turbines
,”
Energy Convers. Manage.
,
70
, pp.
56
65
.
49.
Sun
,
H. Y.
,
Yang
,
H. X.
, and
Gao
,
X. X.
,
2019
, “
Investigation Into Spacing Restriction and Layout Optimization of Wind Farm With Multiple Types of Wind Turbines
,”
Energy
,
168
, pp.
637
650
.
50.
Yang
,
K.
,
Kwak
,
G.
,
Cho
,
K.
, and
Huh
,
J.
,
2019
, “
Wind Farm Layout Optimization for Wake Effect Uniformity
,”
Energy
,
183
, pp.
983
995
.
51.
Wu
,
X. W.
,
Hu
,
W. H.
,
Huang
,
Q.
,
Chen
,
C.
,
Jacobson
,
M. Z.
, and
Chen
,
Z.
,
2020
, “
Optimizing the Layout of Onshore Wind Farms to Minimize Noise
,”
Appl. Energy
,
267
, p.
114896
.
52.
Tingey
,
E. B.
, and
Ning
,
A.
,
2017
, “
Trading off Sound Pressure Level and Average Power Production for Wind Farm Layout Optimization
,”
Renewable Energy
,
114
, pp.
547
555
.
53.
Sorkhabi
,
S. Y. D.
,
Romero
,
D. A.
,
Beck
,
J. C.
, and
Amon
,
C. H.
,
2018
, “
Constrained Multi-Objective Wind Farm Layout Optimization: Novel Constraint Handling Approach Based on Constraint Programming
,”
Renewable Energy
,
126
, pp.
341
353
.
54.
Tao
,
S. Y.
,
Xu
,
Q. S.
,
Feijoo
,
A.
,
Zheng
,
G.
, and
Zhou
,
J. M.
,
2020
, “
Wind Farm Layout Optimization With a Three-Dimensional Gaussian Wake Model
,”
Renewable Energy
,
159
, pp.
553
569
.
55.
Brogna
,
R.
,
Feng
,
J.
,
Sørensen
,
J. N.
,
Shen
,
W. Z.
, and
Porté-Agel
,
F.
,
2020
, “
A New Wake Model and Comparison of Eight Algorithms for Layout Optimization of Wind Farms in Complex Terrain
,”
Appl. Energy
,
259
, p.
114189
.
56.
Parada
,
L.
,
Herrera
,
C.
,
Flores
,
P.
, and
Parada
,
V.
,
2017
, “
Wind Farm Layout Optimization Using a Gaussian-Based Wake Model
,”
Renewable Energy
,
107
(
2017
), pp.
531
541
.
57.
Bastankhah
,
M.
, and
Fernando
,
P. A.
,
2014
, “
A New Analytical Model for Wind-Turbine Wakes
,”
Renewable Energy
,
70
, pp.
116
123
.
58.
Porté-Agel
,
F.
,
Bastankhah
,
M.
, and
Shamsoddin
,
S.
,
2020
, “
Wind-Turbine and Wind-Farm Flows: A Review
,”
Boundary Layer Meteorol.
,
174
(
1
), pp.
1
59
.
59.
Keane
,
A.
,
2021
, “
Advancement of an Analytical Double-Gaussian Full Wind Turbine Wake Model
,”
Renewable Energy
,
171
, pp.
687
708
.
60.
Wang
,
T.
,
Cai
,
C.
,
Wang
,
X.
,
Wang
,
Z. K.
,
Chen
,
Y. W.
,
Song
,
J. J.
,
Xu
,
J. Z.
,
Zhang
,
Y. N.
, and
Li
,
Q. G.
,
2023
, “
A New Gaussian Analytical Wake Model Validated by Wind Tunnel Experiment and LiDAR Field Measurements Under Different Turbulent Flow
,”
Energy
,
271
, p.
127089
.
61.
Kaldellis
,
J. K.
,
Triantafyllou
,
P.
, and
Stinis
,
P.
,
2021
, “
Critical Evaluation of Wind Turbines’ Analytical Wake Models
,”
Renewable Sustainable Energy Rev.
,
144
(
4
), p.
110991
.
62.
Zhang
,
S. H.
,
Gao
,
X. X.
,
Ma
,
W. L.
,
Lu
,
H. K.
,
Lv
,
T.
,
Xu
,
S. N.
,
Zhu
,
X. X.
,
Sun
,
H. Y.
, and
Wang
,
Y.
,
2023
, “
Derivation and Verification of Three-Dimensional Wake Model of Multiple Wind Turbines Based on Super-Gaussian Function
,”
Renewable Energy
,
215
, p.
118968
.
63.
Xue
,
J. K.
, and
Shen
,
B.
,
2020
, “
A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm
,”
Syst. Sci. Control Eng.
,
8
(
1
), pp.
22
34
.
64.
Zhang
,
C. L.
, and
Ding
,
S. F.
,
2021
, “
A Stochastic Configuration Network Based on Chaotic Sparrow Search Algorithm
,”
Knowl.-Based Syst.
,
220
(
10
), p.
106924
.
65.
Rathmann
,
O.
,
Frandsen
,
S.
, and
Barthelmie
,
R.
,
2007
. “
Wake Modelling for Intermediate and Large Wind Farms
,”
EWEC 2007 Wind Energy Conference and Exhibition
,
Milan, Italy
.
66.
David
,
R. V.
,
2006
,
Investigation of Observed and Modeled Wake Effects at Horns Rev Using WindPRO [D]
,
Technical University of Denmark
,
Denmark
.
You do not currently have access to this content.