Abstract

The development of new technologies for energy generation and use has been increasing significantly. In this projection, the use of flat solar collectors to convert solar energy into thermal energy through water heating for residential and commercial purposes has grown due to the potential reduction of up to 40% in electrical energy consumption promoted by these devices. A promising but underexplored area in engineering is the study of the intensification of heat transfer in these devices by changing the dimensional and constructive characteristics of the elevation tubes, especially through a numerical approach by passive systems that operate under the thermosiphon effect. Thus, this work aims to investigate, by using computational fluid dynamics (CFD), the heat transfer process in a flat plate solar collector with a concentric plate to the elevation tube, evaluating different diameters, angles of inclination, and slope corrugation profiles subjected to a constant heat flux. The numerical modeling considers a single-phase, incompressible, permanent, three-dimensional, and laminar flow, in addition to the Boussinesq approximation. The results showed that significant increases in the heat transfer rate can be achieved with absorber plates in comparison to those configurations without absorber plates. Moreover, the increase in the tube diameter allowed gains of up to 5.1% in the heat transfer rate, while the increase in the angle of inclination did not promote significant improvements. The triangular profile R10 P20 configuration increased the Nusselt number by 8%, while the R5 P20 configuration promoted a 25% gain in thermo-hydraulic performance.

References

1.
Weiss
,
W.
, and
Spörk-Dür
,
M.
,
2022
,
Solar Heat Word Wide
,
AEE—Institute for Sustainable Technologies
,
Gleisdorf, Austria
.
2.
Pereira
,
E. B.
,
Martins
,
F. R.
,
Gonçalves
,
A. R.
,
Costa
,
R. S.
,
Lima
,
F. J. L.
,
Ruther
,
R.
,
Abreu
,
S. L.
,
Tiepolo
,
G. M.
,
Pereira
,
S. V.
, and
Souza
,
J. G.
,
2017
,
Atlas Brasileiro de Energia Solar
, 2.ed.,
INPE
,
São José dos Campos, São Paulo
.
3.
ABRASOL
,
2022
,
Boletim 33—Nov/2022
,
Associação Brasileira de Energia Solar Térmica ABRASOL
,
São Paulo
. https://abrasol.org.br/boletim-i-novembro-i-no33-2022/, Accessed 18 December 2022.
4.
Shukla
,
R.
,
Sumanthy
,
K.
, and
Erickson
,
P.
,
2013
, “
Recent Advances in the Solar Water Heating Systems: A Review
,”
Renew. Sust. Energy Rev.
,
19
, pp.
173
190
.
5.
Agunlejika
,
E. O.
,
Langston
,
P.
,
Azzopardi
,
B. J.
, and
Hewakandamby
,
B. N.
,
2016
, “
Flow Instabilities in a Horizontal Thermosyphon Reboiler Loop
,”
Exp. Therm. Fluid. Sci.
,
78
, pp.
90
99
.
6.
Jamar
,
A.
,
Majid
,
Z. A. A.
,
Azmi
,
W. H.
,
Norhafana
,
M.
, and
Razak
,
A. A.
,
2016
, “
A Review of Water Heating System for Solar Energy Applications
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
178
187
.
7.
Jaisankar
,
S.
,
Ananth
,
J.
,
Thulasi
,
S.
,
Jayasuthakar
,
S. T.
, and
Sheeba
,
K. N.
,
2011
, “
A Comprehensive Review on Solar Water Heaters
,”
Renew. Sust. Energy Rev.
,
15
(
6
), pp.
3045
3050
.
8.
Zerrouki
,
A.
,
Boumédien
,
A.
, and
Bouhadef
,
K.
,
2002
, “
The Natural Circulation Solar Water Heater Model With Linear Temperature Distribution
,”
Renew. Energy
,
26
(
4
), pp.
549
559
.
9.
Subiantoro
,
A.
, and
Ooi
,
K. T.
,
2013
, “
Analytical Models for the Computation and Optimization of Single and Double Glazing Flat Plate Collectors With Normal and Small Air Gap Spacing
,”
Appl. Energy
,
104
, pp.
392
399
.
10.
Visa
,
I.
,
Moldovan
,
M.
, and
Duta
,
A.
,
2019
, “
Novel Triangle Flat Plate Solar Thermal Collector for Facades Integration
,”
Renew. Energy
,
143
, pp.
252
262
.
11.
Thakur
,
A.
,
Kumar
,
R.
,
Kumar
,
S.
, and
Kumar
,
P.
,
2021
, “
Review of Developments on Flat Plate Solar Collectors for Heat Transfer Enhancements Using Phase Change Materials and Reflectors
,”
Mater. Today: Proc.
,
45
(
6
), pp.
5449
5455
.
12.
Ibrahim
,
O.
,
Younes
,
R.
, and
Ibrahim
,
M.
,
2018
, “
Macro Flat-Plate Solar Thermal Collector With Rectangular Channels
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061010
.
13.
Siritan
,
M.
,
Vafai
,
K.
,
Kammuang-Lee
,
N.
,
Terdtoon
,
P.
, and
Sakulchangsatjatai
,
P.
,
2023
, “
An Innovative Design for a Solar Water Heating System Utilizing a Flat-Shaped Heat Pipe
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051002
.
14.
Majid
,
Z. A. A.
,
Razak
,
A. A.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2015
, “
Characteristics of Solar Thermal Absorber Materials for Cross Absorber Design in Solar Air Collector
,”
Int. J. Autom. Mech. Eng.
,
11
(
1
), pp.
2582
2590
.
15.
Jyothi
,
J.
,
Chaliyawala
,
H.
,
Srinivas
,
G.
,
Naharaja
,
H. S.
, and
Barshilia
,
H. C.
,
2015
, “
Design and Fabrication of Spectrally Selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO Tandem Absorber for Higherature Solar Thermal Power Applications
,”
Sol. Energy Mater. Sol. Cells
,
140
, pp.
209
216
.
16.
Müller
,
S.
,
Giovannetti
,
F.
,
Reineke-Koch
,
R.
,
Kastner
,
O.
, and
Hafner
,
B.
,
2019
, “
Simulation Study on the Efficiency of Thermochromic Absorber Coatings for Solar Thermal Flat-Plate Collectors
,”
Sol. Energy
,
188
, pp.
865
874
.
17.
Kiliç
,
F.
,
Menlik
,
T.
, and
Sözen
,
A.
,
2018
, “
Effect of Titanium Dioxide/Water Nanofluid Use on Thermal Performance of the Flat Plate Solar Collector
,”
Sol. Energy
,
164
, pp.
101
108
.
18.
Arora
,
S.
,
Fekadu
,
G.
, and
Subudhi
,
S.
,
2019
, “
Energy and Exergy Analysis of Marquise Shaped Channel Flat Plate Collector Using Al2O3—Water Nanofluid and Water
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041008
.
19.
Shamshirgaran
,
S.
,
Assadi
,
M. K.
,
Al-Kayiem
,
H. H.
, and
Sharma
,
K. V.
,
2018
, “
Energetic and Exergetic Performance of a Solar Flat-Plate Collector Working With Cu Nanofluid
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031002
.
20.
Mohamed
,
M. M.
,
Mahmoud
,
N. H.
, and
Farahat
,
M. A.
,
2020
, “
Energy Storage System With Flat Plate Solar Collector and Water-ZnO Nanofluid
,”
Sol. Energy
,
202
, pp.
25
31
.
21.
Morajev
,
M.
,
Bozorg
,
M. V.
,
Guan
,
Y.
,
Li
,
L. K. B.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Xiong
,
Q.
,
2020
, “
Enhancing the Efficiency of a Symmetric Flat-Plate Solar Collector via the Use of Rutile TiO2-Water Nanofluids
,”
Sust. Energy Technol. Assess.
,
40
, p.
100783
.
22.
Zayed
,
M. E.
,
Zhao
,
J.
,
Elsheikh
,
A. H.
,
Du
,
Y.
,
Hammad
,
F. A.
,
Ma
,
L.
,
Kabeel
,
A. E.
, and
Sadek
,
S.
,
2019
, “
Performance Augmentation of Flat Plate Solar Water Collector Using Phase Change Materials and Nanocomposite Phase Change Materials: A Review
,”
Process Saf. Environ. Prot.
,
128
, pp.
135
157
.
23.
Balaji
,
K.
,
Ganesh Kumar
,
P.
,
Sakthivadiel
,
D.
,
Vigneswaran
,
V. S.
, and
Iniyan
,
S.
,
2019
, “
Experimental Investigation on Flat Plate Solar Collector Using Frictionally Engaged Thermal Performance Enhancer in the Absorber Tube
,”
Renew. Energy
,
142
, pp.
62
72
.
24.
Vijay
,
R.
,
Vijayakumar
,
P.
,
Kumaresan
,
G.
, and
Gokul Kumar
,
S.
,
2021
, “
Performance Study of Flat Plate Solar Collector Integrated With Twisted Tape Inserts
,”
Mater. Today: Proc.
,
45
(
2
), pp.
1222
1226
.
25.
Andrade
,
F.
,
Moita
,
A. S.
,
Nikulin
,
A.
,
Moreira
,
A. L. N.
, and
Santos
,
H.
,
2019
, “
Experimental Investigation on Heat Transfer and Pressure Drop of Internal Flow in Corrugated Tubes
,”
Int. J. Heat Mass Transfer
,
140
, pp.
940
955
.
26.
Vicente
,
P. G.
,
García
,
A.
, and
Viedma
,
A.
,
2004
, “
Mixed Convection Heat Transfer and Isothermal Pressure Drop in Corrugated Tubes for Laminar and Transition Flow
,”
Int. Commun. Heat Mass Transfer
,
31
(
5
), pp.
651
662
.
27.
Rainieri
,
S.
,
Farina
,
A.
, and
Pagliarini
,
G.
,
1996
, “
Experimental Investigation of Heat Transfer and Pressure Drop Augmentation for Laminar Flow in Spirally Enhanced Tubes
,”
Proceedings of the 2nd European Thermal-Sciences and 14th UIT National Heat Transfer Conference
,
Rome, Italy
,
May 29–31
.
28.
Barba
,
A.
,
Rainieri
,
S.
, and
Spiga
,
M.
,
2002
, “
Heat Transfer Enhancement in a Corrugated Tube
,”
Int. Commun. Heat Mass Transfer
,
29
(
3
), pp.
313
322
.
29.
Mohammed
,
H. A.
,
Abbas
,
A. K.
, and
Sheriff
,
J. M.
,
2013
, “
Influence of Geometrical Parameters and Forced Convective Heat Transfer in Transversely Corrugated Circular Tubes
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
116
126
.
30.
Chen
,
C.
,
Wu
,
Y.
,
Wang
,
S.
, and
Ma
,
C.
,
2013
, “
Experimental Investigation on Enhanced Heat Transfer in Transversally Corrugated Tube With Molten Salt
,”
Exp. Therm. Fluid. Sci.
,
47
, pp.
108
116
.
31.
Rainieri
,
S.
, and
Pagliarini
,
G.
,
2002
, “
Convective Heat Transfer to Temperature Dependent Property Fluids in the Entry Region of Corrugated Tubes
,”
Int. J. Heat Mass Transfer
,
45
(
22
), pp.
4525
4536
.
32.
Cruz
,
G. G.
,
Mendes
,
M. A. A.
,
Pereira
,
J. M. C.
,
Santos
,
H.
,
Nikulin
,
A.
, and
Moita
,
A. S.
,
2021
, “
Experimental and Numerical Characterization of Single-Phase Pressure Drop and Heat Transfer Enhancement in Helical Corrugated Tubes
,”
Int. J. Heat Mass Transfer
,
179
, p.
121632
.
33.
García
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2012
, “
The Influence of Artificial Roughness Shape on Heat Transfer Enhancement: Corrugated Tubes, Dimpled Tubes and Wire Coils
,”
Appl. Therm. Eng.
,
35
(
1
), pp.
196
201
.
34.
Du
,
J.
,
Hong
,
Y.
,
Huang
,
S.-M.
,
Ye
,
W.-B.
, and
Wang
,
S.
,
2018
, “
Laminar Thermal and Fluid Flow Characteristics in Tubes With Sinusoidal Ribs
,”
Int. J. Heat Mass Transfer
,
120
, pp.
635
651
.
35.
Vicente
,
P. G.
,
García
,
A.
, and
Viedma
,
A.
,
2004
, “
Experimental Investigation on Heat Transfer and Frictional Characteristics of Spirally Corrugated Tubes in Turbulent Flow at Different Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
671
681
.
36.
Da Silva
,
F. A. S.
,
Dezan
,
D. J.
,
Pantaleão
,
A. V.
, and
Salviano
,
L. O.
,
2019
, “
Longitudinal Vortex Generator Applied to Heat Transfer Enhancement of a Flat Plate Solar Water Heater
,”
Appl. Therm. Eng.
,
158
, p.
113790
.
37.
Salviano
,
L. O.
,
Dezan
,
J. D.
, and
Yanagihara
,
J. I.
,
2016
, “
Thermal-Hydraulic Performance Optimization of Inline and Staggered Fin-Tube Compact Heat Exchangers Applying Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
95
, pp.
311
329
.
38.
Silva Junior
,
L. G.
,
Silva
,
F. A. S.
,
Faria
,
T. G.
,
Kessler
,
M. P.
, and
Salviano
,
L. O.
,
2021
, “
Constrained Direct Optimisation of the Geometrical Parameters of Twisted-Tape for Laminar Flow in a Circular Tube
,”
Int. J. Comput. Fluid Dyn.
,
35
(
6
), pp.
468
484
.
39.
Ghasemi
,
E.
,
Soleimani
,
S.
, and
Bararnia
,
H.
,
2012
, “
Natural Convection Between a Circular Enclosure and an Elliptic Cylinder Using Control Volume Based Finite Element Method
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1035
1044
.
40.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Pop
,
I.
, and
Soleimani
,
S.
,
2013
, “
Numerical Study of Natural Convection Between a Circular Enclosure and a Sinusoidal Cylinder Using Control Volume Based Finite Element Method
,”
Int. J. Therm. Sci.
,
72
, pp.
147
158
.
41.
ANSYS, Inc.
,
2013
,
ANSYS Fluent Theory Guide
, Release 15.0,
SAS IP, Inc
.
42.
Barth
,
T. J.
, and
Jespersen
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th AIAA Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 9–12
. AIAA Paper No. 89-0366.
43.
Jaisankar
,
S.
,
Radhakrishnan
,
T. K.
, and
Sheeba
,
K. N.
,
2009
, “
Studies on Heat Transfer and Friction Factor Characteristics of Thermosyphon Solar Water Heating System With Helical Twisted Tapes
,”
Energy
,
34
(
9
), pp.
1054
1064
.
44.
Jaisankar
,
S.
,
Radhakrishnan
,
T. K.
, and
Sheeba
,
K. N.
,
2011
, “
Experimental Studies on Heat Transfer and Thermal Performance Characteristics of Thermosyphon Solar Water Heating System With Helical and Left-Right Twisted Tapes
,”
Energy Convers. Manage.
,
52
(
5
), pp.
2048
2055
.
45.
Gunjo
,
D. G.
,
Mahanta
,
P.
, and
Robi
,
P. S.
,
2017
, “
CFD and Experimental Investigation of Plate Solar Water Heating System Under Steady State Condition
,”
Renew. Energy
,
106
, pp.
24
36
.
46.
Chang
,
T. P.
,
2009
, “
The Sun’s Apparent Position and the Optimal Tilt Angle of a Solar Collector in the Northern Hemisphere
,”
Sol. Energy
,
83
(
8
), pp.
1274
1284
.
47.
Kacinski
,
R.
,
Strasser
,
W.
,
Leonard
,
S.
,
Prichard
,
R.
, and
Truxel
,
B.
,
2023
, “
Validation of a Human Upper Airway CFD Model for Turbulent Mixing
,”
ASME J. Fluids Eng.
,
145
(
12
), p.
121203
.
48.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
49.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
.
50.
Gupta
,
C. L.
, and
Garg
,
H. P.
,
1968
, “
System Design in Solar Water Heaters With Natural Circulation
,”
Sol. Energy
,
12
(
2
), pp.
163
182
.
You do not currently have access to this content.