Abstract

A novel optimization method is developed for the design of an anti-icing blunt trailing-edge wind wheel of H-type vertical axis wind turbine (VAWT) based on the quasi-steady-state icing. The parametric expression of the airfoil is given using the mean camber and thickness functions, the blunt trailing-edge is constructed by the rotation and zoom of coordinates, and then through the aerodynamic design theory, the geometry control equations of the blunt trailing-edge wind wheel are established. The icing process using Solution and Icing modules is repeated at equal interval azimuths to obtain the ice on the wind wheel per revolution. The optimization model is solved using particle swarm optimization (PSO) algorithm integrated with computational fluid dynamics (CFD) method to maximize the wind energy utilization in both ice-free and icing conditions. Significant improvements are realized for flow and aerodynamic characteristics, confirming that the optimization method provides important guidance for an anti-icing design of VAWT blades.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Martini
,
F.
,
Montoya
,
L. T. C.
, and
Ilinca
,
A.
,
2021
, “
Review of Wind Turbine Icing Modelling Approaches
,”
Energies
,
14
(
16
), p.
5207
.
2.
Guo
,
W. F.
,
Shen
,
H.
,
Li
,
Y.
,
Feng
,
F.
, and
Tagawa
,
K.
,
2021
, “
Wind Tunnel Tests of the Rime Icing Characteristics of a Straight-Bladed Vertical Axis Wind Turbine
,”
Renew. Energy
,
179
, pp.
116
132
.
3.
Gao
,
L. Y.
, and
Hu
,
H.
,
2021
, “
Wind Turbine Icing Characteristics and Icing-Induced Power Losses to Utility-Scale Wind Turbines
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
42
), p.
e2111461118
.
4.
Hu
,
L. Q.
,
Zhu
,
X. C.
,
Hu
,
C. X.
,
Chen
,
J. G.
, and
Du
,
Z. H.
,
2017
, “
Wind Turbines Ice Distribution and Load Response Under Icing Conditions
,”
Renew. Energy
,
113
, pp.
608
619
.
5.
Gantasala
,
S.
,
Tabatabaei
,
N.
,
Cervantes
,
M.
, and
Aidanpää
,
J. O.
,
2019
, “
Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine With Iced Blades
,”
Energies
,
12
(
12
), p.
2422
.
6.
Sunden
,
B.
, and
Wu
,
Z.
,
2015
, “
On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051203
.
7.
Sagol
,
E.
,
Reggio
,
M.
, and
Ilinca
,
A.
,
2013
, “
Issues Concerning Roughness on Wind Turbine Blades
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
514
525
.
8.
Zhang
,
X.
,
Wang
,
G. G.
,
Liu
,
H. L.
, and
Li
,
W.
,
2018
, “
Study of Optimization Design Method for Asymmetric Blunt Trailing-Edge Airfoil of Wind Turbine
,”
J. Eng. Thermophys.
,
39
(
2
), pp.
326
334
.
9.
Ram
,
K. R.
,
Lal
,
S.
, and
Ahmed
,
M. R.
,
2013
, “
Low Reynolds Number Airfoil Optimization for Wind Turbine Applications Using Genetic Algorithm
,”
J. Renewable Sustainable Energy
,
5
(
5
), p.
052007
.
10.
Ram
,
K. R.
,
Lal
,
S. P.
, and
Ahmed
,
M. R.
,
2019
, “
Design and Optimization of Airfoils and a 20 kW Wind Turbine Using Multi-objective Genetic Algorithm and HARP_Opt Code
,”
Renew. Energy
,
144
, pp.
56
67
.
11.
Chen
,
J.
,
Wang
,
Q.
,
Pang
,
X. P.
,
Li
,
S. L.
, and
Guo
,
X. F.
,
2013
, “
Improvement of Airfoil Design Using Smooth Curvature Technique
,”
Renew. Energy
,
51
, pp.
426
435
.
12.
Chen
,
J.
,
Wang
,
Q.
,
Li
,
S. L.
,
Guo
,
X. F.
, and
Wang
,
X. D.
,
2014
, “
Study of Optimization Design Method for Wind Turbine Airfoil Combining Airfoil Integrated Theory and B-Spine
,”
Acta Energiae Solaris Sin.
,
35
(
10
), pp.
1930
1935
.
13.
Sun
,
Z. C.
,
Mao
,
Y. F.
, and
Fan
,
M. H.
,
2021
, “
Performance Optimization and Investigation of Flow Phenomena on Tidal Turbine Blade Airfoil Considering Cavitation and Roughness
,”
Appl. Ocean Res.
,
106
, p.
102463
.
14.
Zhu
,
W. J.
,
Shen
,
W. Z.
, and
Sørensen
,
J. N.
,
2014
, “
Integrated Airfoil and Blade Design Method for Large Wind Turbines
,”
Renew. Energy
,
70
, pp.
172
183
.
15.
Yang
,
R.
,
Li
,
R. N.
,
Zhang
,
S. A.
, and
Li
,
D. S.
,
2010
, “
Computational Analyses on Aerodynamic Characteristics of Flatback Wind Turbine Airfoils
,”
J. Mech. Eng.
,
46
(
2
), pp.
106
110
.
16.
Zhang
,
X.
,
Liu
,
H. L.
,
Wang
,
G. G.
, and
Li
,
W.
,
2017
, “
Aerodynamic Performance of Blunt Trailing-Edge Airfoil Considering Roughness Sensitivity Position
,”
Trans. CSAE
,
33
(
8
), pp.
82
89
.
17.
Zhang
,
X.
,
Zhang
,
X. Y.
,
Wang
,
G. G.
, and
Li
,
W.
,
2020
, “
Effects of Blunt Trailing-Edge Optimization on Aerodynamic Characteristics of NREL Phase VI Wind Turbine Blade Under Rime Ice Conditions
,”
J. Vibroeng.
,
22
(
5
), pp.
1196
1209
.
18.
Zhang
,
X.
,
Zhao
,
L.
,
Li
,
W.
,
Zhang
,
X. Y.
, and
Bocian
,
M.
,
2022
, “
Optimal Design for the Blunt Trailing-Edge Profile of Wind Turbine Airfoils Under Glaze Ice Conditions
,”
J. Eng. Mech.
,
148
(
3
), p.
04022009
.
19.
Liu
,
Z. Y.
,
Feng
,
F.
,
Li
,
Y.
,
Sun
,
Y.
, and
Tagawa
,
K.
,
2023
, “
A Corncob Biochar-Based Superhydrophobic Photothermal Coating With Micro-Nano-Porous Rough-Structure for Ice-Phobic Properties
,”
Surf. Coat. Technol.
,
457
, p.
129299
.
20.
Li
,
Y.
,
Wang
,
S. L.
,
Liu
,
Q. D.
,
Feng
,
F.
, and
Tagawa
,
K.
,
2018
, “
Characteristics of Ice Accretions on Blade of the Straight-Bladed Vertical Axis Wind Turbine Rotating at Low Tip Speed Ratio
,”
Cold Reg. Sci. Technol.
,
145
, pp.
1
13
.
21.
Li
,
Y.
,
Feng
,
F.
,
Li
,
S. M.
, and
Tian
,
W. Q.
,
2011
, “
Computer Simulation of Icing on NACA0015 Blade Airfoil for Vertical Axis Wind Turbine
,”
Appl. Mech. Mater.
,
84–85
, pp.
697
701
.
22.
Manatbayev
,
R.
,
Baizhuma
,
Z.
,
Bolegenova
,
S.
, and
Georgiev
,
A.
,
2021
, “
Numerical Simulations on Static Vertical Axis Wind Turbine Blade Icing
,”
Renew. Energy
,
170
, pp.
997
1007
.
23.
Baizhuma
,
Z.
,
Kim
,
T.
, and
Son
,
C.
,
2021
, “
Numerical Method to Predict Ice Accretion Shapes and Performance Penalties for Rotating Vertical Axis Wind Turbines Under Icing Conditions
,”
J. Wind Eng. Ind. Aerodyn.
,
216
, p.
104708
.
24.
Zhang
,
X.
,
Li
,
Z. X.
,
Yu
,
X.
, and
Li
,
W.
,
2019
, “
Aerodynamic Performance of Trailing-Edge Modification of H-Type VAWT Blade Considering Camber Effect
,”
Int. J. Aeronaut. Space
,
21
(
3
), pp.
587
598
.
25.
Yang
,
C. X.
,
Li
,
Z. P.
, and
Shi
,
G. T.
,
2013
, “
Aerodynamic Performance of Vertical Axis Wind Turbine on Height-Diameter Ratio
,”
New Technol. New Process
, (
11
), pp.
86
88
.
26.
Li
,
Y.
,
Liu
,
Q. D.
,
Wang
,
S. L.
,
Feng
,
F.
, and
Tagawa
,
K.
,
2016
, “
Wind Tunnel Test and Numerical Simulation on Blade Icing of Small-Scaled Vertical Axis Wind Turbine
,”
Acta Aerodyn. Sin.
,
34
(
5
), pp.
568
572
.
27.
Fensap-ICE
,
2021
,
ANSYS FENSAP-ICE User Manual
,
ANSYS Inc.
,
Canonsburg, PA
.
28.
Subramanian
,
A.
,
Yogesh
,
S. A.
,
Sivanandan
,
H.
,
Giri
,
A.
,
Vasudevan
,
M.
,
Mugundhan
,
V.
, and
Velamati
,
R. K.
,
2017
, “
Effect of Airfoil and Solidity on Performance of Small Scale Vertical Axis Wind Turbine Using Three Dimensional CFD Model
,”
Energy
,
133
, pp.
179
190
.
You do not currently have access to this content.