Abstract

Molten salts are employed as the heat transfer fluid to carry the thermal energy from a solar receiver or a nuclear reactor for delivering to thermal storage systems or thermal power plants for power generation. For the startup operation, molten salts need to be pumped to flow into the pipes which may have lower temperature than the freezing point of molten salt due to the cold ambient temperature overnight or over the suspension of operation. Preventing the freezing of molten salt in cold pipes becomes a critical issue to the safe operation of a concentrating solar thermal power plant or a molten salt nuclear power plant. This study conducted a basic heat transfer analysis of the transient heat transfer from flowing molten salt to a cold pipe to determine the length from entrance to the onset of freezing of the fluid. From our modeling and analytical solution using method of characteristics, the correlation of the location of onset of freezing of molten salt with respect to the flow velocity, heat capacities of molten salt and pipes, dimension of the pipes, and the initial temperatures of salts and pipes, have been understood clearly. The modeling and computational tool can fundamentally help engineers to design a system to avoid freezing and clogging at cold startup when molten salt is applied as a heat transfer fluid.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fernandez
,
A. G.
,
Gomez-Vidal
,
J.
,
Oro
,
E.
,
Kruizenga
,
A.
,
Sole
,
A.
, and
Cabeza
,
L. F.
,
2019
, “
Mainstreaming Commercial CSP Systems: A Technology Review
,”
Renew. Energy
,
140
(
C
), pp.
152
176
.
2.
Hand
,
M. M.
,
Baldwin
,
S.
,
DeMeo
,
E.
,
Reilly
,
J.
,
Mai
,
T.
,
Arent
,
D.
,
Porro
,
G.
,
Meshek
,
M.
, and
Sandor
,
D.
,
2012
,
Renewable Electricity Futures Study
,
National Renewable Energy Laboratory
,
Golden, CO
. Report No. NREL/TP-6A20-52409.
3.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
.
4.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
5.
Dunn
,
R. I.
,
Hearps
,
P. J.
, and
Wright
,
M. N.
,
2012
, “
Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage
,”
Proc. IEEE
,
100
(
2
), pp.
504
515
.
6.
Xu
,
X. K.
,
Wang
,
X. X.
,
Li
,
P. W.
,
Li
,
Y. Y.
,
Hao
,
Q.
,
Xiao
,
B.
,
Elsentriecy
,
H.
, and
Gervasio
,
D.
,
2018
, “
Experimental Test of Properties of KCl–MgCl2 Eutectic Molten Salt for Heat Transfer and Thermal Storage Fluid in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051011
.
7.
Wang
,
X. X.
,
Del Rincon
,
J.
,
Li
,
P. W.
,
Zhao
,
Y. Y.
, and
Vidal
,
J.
,
2021
, “
Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041005
.
8.
Zhao
,
Y.
, and
Vidal
,
J.
,
2020
, “
Potential Scalability of a Cost-Effective Purification Method for MgCl2-Containing Salts for Next-Generation Concentrating Solar Power Technologies
,”
Sol. Energy Mater. Sol. Cells
,
215
, p.
110663
.
9.
Prieto
,
C.
,
Rodríguez-Sánchez
,
A.
,
Ruiz-Cabañas
,
F. J.
, and
Cabeza
,
L. F.
,
2019
, “
Feasibility Study of Freeze Recovery Options in Parabolic Trough Collector Plants Working With Molten Salt as Heat Transfer Fluid
,”
Energies
,
12
(
12
), p.
2340
.
10.
Lake
,
J. A.
,
2002
, “
The Fourth Generation of Nuclear Power
,”
Prog. Nucl. Energy
,
40
(
3–4
), pp.
301
307
.
11.
Weigand
,
B.
, and
Beer
,
H.
,
1992
, “
Solidification of Flowing Liquid in an Asymmetric Cooled Parallel-Plate Channel
,”
Int. Commun. Heat Mass Transfer
,
19
(
1
), pp.
17
27
.
12.
Cheung
,
F. B.
, and
Baker Jr.
,
L.
,
1976
, “
Transient Freezing of Liquids in Tube Flow
,”
Nucl. Sci. Eng.
,
60
(
1
), pp.
1
9
.
13.
Pacheco
,
J. E.
,
Ralph
,
M. E.
,
Chavez
,
J. M.
,
Dunkin
,
S. R.
,
Rush
,
E. E.
,
Ghanbari
,
C. M.
, and
Matthews
,
M. W.
,
1995
, “Results of Molten Salt Panel and Component Experiments for Solar Central Receivers: Cold Fill, Freeze/Thaw, Thermal Cycling and Shock, and Instrumentation Tests,” Sandia National Laboratory Technical Report, Report No. SAND94-2525.
14.
Pacheco
,
J. E.
, and
Dunkin
,
S. R.
,
1996
, “
Assessment of Molten-Salt Solar Central Receiver Freeze-Up and Recovery Events. Solar Engineering
,”
Proceedings of ASME International Solar Energy Conference
,
San Antonio, TX
,
Mar. 31–Apr. 3
, pp.
1
6
.
15.
Myers
,
T. G.
, and
Low
,
J.
,
2011
, “
An Approximate Mathematical Model for Solidification of a Flowing Liquid in a Microchannel
,”
Microfluid. Nanofluid.
,
11
(
4
), pp.
417
428
.
16.
Lister
,
J. R.
, and
Dellar
,
P. J.
,
1996
, “
Solidification of Pressure-Driven Flow in a Finite Rigid Channel With Application to Volcanic Eruptions
,”
J. Fluid Mech.
,
323
, pp.
267
283
.
17.
Chung
,
B. T. F.
,
Gulati
,
S.
, and
Dalmia
,
A. K.
,
1993
, “
Solidification of a Flowing Liquid Inside a Pipe Subject to Radiation and Convection
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
1
), pp.
269
272
.
18.
Liao
,
Z. R.
,
Li
,
X.
,
Wang
,
Z. F.
,
Chang
,
C.
, and
Xu
,
C.
,
2014
, “
Phase Change of Molten Salt During the Cold Filling of a Receiver Tube
,”
Sol. Energy
,
101
, pp.
254
264
.
19.
Liao
,
Z. R.
,
Li
,
X. Y.
,
Wang
,
Z.
,
Chang
,
C.
, and
Li
,
Z.
,
2015
, “
Numerical Model and Validation for Simulating the Cold Filling of the Molten Salt Receiver Tube
,”
Energy Proc.
,
69
, pp.
451
460
.
20.
Swart
,
J. J.
,
2017
, “
One-Dimensional Cold Filling Simulation of a Molten Salt Central Receiver Pipe
,”
Master’s thesis
,
Department of Mechanical Engineering in the Faculty of Engineering at Stellenbosch University
,
South Africa
.
21.
Lu
,
J.
,
Ding
,
J.
, and
Yang
,
J.
,
2010
, “
Solidification and Melting Behaviors and Characteristics of Molten Salt in Cold Filling Pipe
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1628
1635
.
22.
Lu
,
J.
,
Ding
,
J.
, and
Yang
,
J.
,
2013
, “
Filling Dynamics and Phase Change of Molten Salt in Cold Receiver Pipe During Initial Pumping Process
,”
Int. J. Heat Mass Transfer
,
64
, pp.
98
107
.
23.
Xu
,
T.
,
Zhang
,
G.
,
Peniguel
,
C.
,
Liao
,
Z.
,
Li
,
X.
,
Lu
,
J.
, and
Wang
,
Z.
,
2017
, “
Numerical Study of Cold Filling and Tube Deformation in the Molten Salt Receiver
,”
AIP Conf. Proc.
,
1850
(
1
), p.
070007
.
24.
Li
,
P. W.
,
Xu
,
B.
,
Han
,
J. X.
, and
Yang
,
Y. P.
,
2014
, “
Verification of a Model of Thermal Storage Incorporated With an Extended Lumped Capacitance Method for Various Solid-Fluid Structural Combinations
,”
Sol. Energy
,
105
, pp.
71
81
.
25.
Xu
,
B.
,
Li
,
P. W.
, and
Chan
,
C. L.
,
2012
, “
Extending the Validity of Lumped Capacitance Method for Large Biot Number in Thermal Storage Application
,”
Sol. Energy
,
86
(
6
), pp.
1709
1724
.
26.
Van Lew
,
J. T.
,
Li
,
P.
,
Chan
,
C. L.
,
Karaki
,
W.
, and
Stephens
,
J.
,
2011
, “
Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021003
.
27.
Dittus
,
F.
, and
Boelter
,
L.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
28.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw Hill
,
New York
.
29.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Introduction to Heat Transfer
, 4th ed.,
John Wiley and Sons, Inc
,
Hoboken, NJ
.
30.
Li
,
P.
,
Van Lew
,
J.
,
Chan
,
C.
,
Karaki
,
W.
,
Stephens
,
J.
, and
O’Brien
,
J. E.
,
2012
, “
Similarity and Generalized Analysis of Efficiencies of Thermal Energy Storage Systems
,”
Renew. Energy
,
39
(
1
), pp.
388
402
.
31.
Zhang
,
Y.
,
Wang
,
X. X.
,
Hu
,
Q. C.
,
Li
,
P. W.
,
Liu
,
Q. B.
, and
Xu
,
B.
,
2022
, “
Experimental Study of Eutectic Molten Salts NaCl/KCl/ZnCl2 Heat Transfer Inside a Smooth Tube for High Temperature Application
,”
ASME J. Sol. Energy Eng.
,
114
(
4
), p.
044501
.
32.
Bonanos
,
A. M.
,
Georgiou
,
M. C.
,
Stokos
,
K. G.
, and
Papanicolas
,
C. N.
,
2019
, “
Engineering Aspects and Thermal Performance of Molten Salt Transfer Lines in Solar Power Applications
,”
Appl. Therm. Eng.
,
154
, pp.
294
301
.
33.
Bonk
,
A.
, and
Bauer
,
T.
,
2021
, “Solar Salt Thermal Property Analysis—Report on Thermo-Physical Properties of Binary NaNO3-KNO3 Mixtures in a Range of 59–61 wt% NaNO3, Scientific Report: DLR-FB-2021-19, Aug. 31, 2021. German Aerospace Center.
34.
D’Aguanno
,
B.
,
Karthik
,
M.
,
Grace
,
A. N.
, and
Floris
,
A.
,
2018
, “
Thermostatic Properties of Nitrate Molten Salts and Their Solar and Eutectic Mixtures
,”
Nat. Sci. Rep.
,
8
, p.
10485
.
35.
Gamil
,
A.
,
Li
,
P.
,
Ali
,
B.
, and
Hamid
,
M. A.
,
2022
, “
Concentrating Solar Thermal Power Generation in Sudan: Potential and Challenges
,”
Renew. Sustain. Energy Rev.
,
161
, p.
112366
.
You do not currently have access to this content.