Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Salt hydrates, like the sodium acetate trihydrate (SAT), possess a remarkable ability to store copious amounts of thermal energy, thanks to their ingenious utilization of a high latent heat of fusion. This unique property makes them a compelling choice for various energy storage applications. In this study, aluminum and copper foams with pore sizes of 40, 80, and 110 pores per inch (PPI) coated with disodium hydrogen phosphate dodecahydrate were prepared, and their effects on the SAT solidification temperature, latent heat of fusion, and thermal conductivity were investigated. The samples' thermal conductivity was measured using the guarded heat flow method. Thermal properties, including latent heat of fusion and supercooling were measured using the T-History method. The results showed that the metal foam matrix is an effective method of enhancing the thermal conductivity of SAT while occupying a small volume of the composite. The copper foam with a PPI of 80 was able to increase the effective thermal conductivity to 2.62 W/(m⋅K), an increase of 388.15% compared to pure SAT while occupying approximately 6.5% of the composite volume. The T-History results showed a solidification temperature of 57.52 °C along with a super cooling of 3.28 °C for the same sample set. Furthermore, it was also found that copper samples significantly outperformed the aluminum ones, despite the higher porosity.

References

1.
Liu
,
C.
,
Hu
,
P.
,
Xu
,
Z.
,
Ma
,
X.
, and
Rao
,
Z.
,
2019
, “
Experimental Investigation on Thermal Properties of Sodium Acetate Trihydrate Based Phase Change Materials for Thermal Energy Storage
,”
Thermochim. Acta
,
674
, pp.
28
35
.
2.
Kant
,
K.
,
Biwole
,
P. H.
,
Shamseddine
,
I.
,
Tlaiji
,
G.
,
Pennec
,
F.
, and
Fardoun
,
F.
,
2021
, “
Recent Advances in Thermophysical Properties Enhancement of Phase Change Materials for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
231
, p.
111309
.
3.
Dannemand
,
M.
,
Schultz
,
J. M.
,
Johansen
,
J. B.
, and
Furbo
,
S.
,
2015
, “
Long Term Thermal Energy Storage With Stable Supercooled Sodium Acetate Trihydrate
,”
Appl. Therm. Eng.
,
91
, pp.
671
678
.
4.
Sharma
,
S. D.
, and
Sagara
,
K.
,
2005
, “
Latent Heat Storage Materials and Systems: A Review
,”
Int. J. Green Energy
,
2
(
1
), pp.
1
56
.
5.
Wang
,
G.
,
Xu
,
C.
,
Kong
,
W.
,
Englmair
,
G.
,
Fan
,
J.
,
Wei
,
G.
, and
Furbo
,
S.
,
2021
, “
Review on Sodium Acetate Trihydrate in Flexible Thermal Energy Storages: Properties, Challenges and Applications
,”
J. Energy Storage
,
40
, p.
102780
.
6.
Kumar
,
R.
,
Vyas
,
S.
,
Kumar
,
R.
, and
Dixit
,
A.
,
2017
, “
Development of Sodium Acetate Trihydrate-Ethylene Glycol Composite Phase Change Materials With Enhanced Thermophysical Properties for Thermal Comfort and Therapeutic Applications
,”
Sci. Rep.
,
7
(
1
), p.
5203
.
7.
Johansen
,
J. B.
,
Englmair
,
G.
,
Dannemand
,
M.
,
Kong
,
W.
,
Fan
,
J.
,
Dragsted
,
J.
,
Perers
,
B.
, and
Furbo
,
S.
,
2016
, “
Laboratory Testing of Solar Combi System With Compact Long Term PCM Heat Storage
,”
Energy Proc.
,
91
, pp.
330
337
.
8.
Wang
,
Y.
,
Yu
,
K.
,
Peng
,
H.
, and
Ling
,
X.
,
2019
, “
Preparation and Thermal Properties of Sodium Acetate Trihydrate as a Novel Phase Change Material for Energy Storage
,”
Energy
,
167
, pp.
269
274
.
9.
Furbo
,
S.
, and
Fan
,
J.
,
2012
, “Heat Storage Based on a NaCH3COO Water Mixture for Solar Heating Systems,” DTU Civil Engineering Reports, https://orbit.dtu.dk/en/publications/heat-storage-based-on-a-nach3coo-water-mixture-for-solar-heating-
10.
Rybár
,
R.
,
Beer
,
M.
, and
Kaľavský
,
M.
,
2019
, “
Development of Heat Accumulation Unit Based on Heterogeneous Structure of MF/PCM for Cogeneration Units
,”
J. Energy Storage
,
21
, pp.
72
77
.
11.
Kimura
,
H.
, and
Kai
,
J.
,
1985
, “
Phase Change Stability of Sodium Acetate Trihydrate and its Mixtures
,”
Sol. Energy
,
35
(
6
), pp.
527
534
.
12.
Wada
,
T.
,
Matsuo
,
Y.
, and
Yamamoto
,
R.
,
1984
, “
Heat Storage Capacity of Sodium Acetate Trihydrate During Thermal Cycling
,”
Sol. Energy
,
33
(
3/4
), pp.
373
375
.
13.
Mao
,
J.
,
Dong
,
X.
,
Hou
,
P.
, and
Lian
,
H.
,
2017
, “
Preparation Research of Novel Composite Phase Change Materials Based on Sodium Acetate Trihydrate
,”
Appl. Therm. Eng.
,
118
, pp.
817
825
.
14.
Wada
,
T.
, and
Yamamoto
,
R.
,
1982
, “
Studies on Salt Hydrate for Latent Heat Storage. I. Crystal Nucleation of Sodium Acetate Trihydrate Catalyzed by Tetrasodium Pyrophosphate Decahydrate
,”
Bull. Chem. Soc. Jpn.
,
55
(
11
), pp.
3603
3606
.
15.
Guion
,
J.
, and
Teisseire
,
M.
,
1991
, “
Nucleation of Sodium Acetate Trihydrate in Thermal Heat Storage Cycles
,”
Sol. Energy
,
46
(
2
), pp.
97
100
.
16.
Xu
,
J.
, and
Xiufang
,
K.
,
2007
, “
Study of Phase Change Property of Sodium Acetate Trihydrate as Energy Storage Material
,”
Mater. Rev.
,
21
(
9
), pp.
319
321
.
17.
Li
,
T. X.
,
Wu
,
D. L.
,
He
,
F.
, and
Wang
,
R. Z.
,
2017
, “
Experimental Investigation on Copper Foam/Hydrated Salt Composite Phase Change Material for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
115
(
Part A
), pp.
148
157
.
18.
Mao
,
J.
,
Li
,
J.
,
Li
,
J.
,
Peng
,
G.
, and
Li
,
J
,
2009
, “
A Selection and Optimization Experimental Study of Additives to Thermal Energy Storage Material Sodium Acetate Trihydrate
,”
Proceedings of the 2009 International Conference on Energy and Environment Technology
,
Guangxi, China
,
Oct. 16–18
, pp.
14
17
.
19.
Cui
,
W.
,
Guo
,
T.
,
Xinhui
,
Y.
,
Ma
,
H.
,
Liang
,
D.
, and
Dong
,
J.
,
2023
, “
Experimental Study on Supercooling and Heat Transfer Performance During the Solidification of Sodium Acetate Trihydrate Composites
,”
Sol. Energy Mater. Sol. Cells
,
250
, p.
112098
.
20.
Wu
,
L.
,
Li
,
J.
,
Wang
,
H.
,
Zhang
,
Y.
,
Feng
,
S.
,
Guo
,
Y.
,
Zhao
,
J.
,
Wang
,
X.
, and
Guo
,
L.
,
2020
, “
Experimental Investigation on Mechanism of Latent Heat Reduction of Sodium Acetate Trihydrate Phase Change Materials
,”
Materials
,
13
(
3
), p.
584
.
21.
Cui
,
W.
,
Yuan
,
Y.
,
Sun
,
L.
,
Cao
,
X.
, and
Yang
,
X.
,
2016
, “
Experimental Studies on the Supercooling and Melting/Freezing Characteristics of Nano-Copper/Sodium Acetate Trihydrate Composite Phase Change Materials
,”
Renew. Energy
,
99
, pp.
1029
1037
.
22.
Fashandi
,
M.
, and
Leung
,
S. N.
,
2018
, “
Sodium Acetate Trihydrate-Chitin Nanowhisker Nanocomposites With Enhanced Phase Change Performance for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
178
, pp.
259
265
.
23.
Kumah
,
E. A.
,
Fopa
,
R. D.
,
Harati
,
S.
,
Boadu
,
P.
,
Zohoori
,
F. V.
, and
Pak
,
T.
,
2023
, “
Human and Environmental Impacts of Nanoparticles: A Scoping Review of the Current Literature
,”
BMC Public Health
,
23
(
1
), p.
1059
.
24.
Hsieh
,
W.
,
Wu
,
J.
,
Shih
,
W.
, and
Chiu
,
W.
,
2004
, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5149
5157
.
25.
Zhu
,
F.
,
Zhang
,
C.
, and
Gong
,
X.
,
2017
, “
Numerical Analysis on the Energy Storage Efficiency of Phase Change Material Embedded in Finned Metal Foam With Graded Porosity
,”
Appl. Therm. Eng.
,
123
, pp.
256
265
.
26.
Xiao
,
Q.
,
Zhang
,
M.
,
Fan
,
J.
,
Li
,
L.
,
Xu
,
T.
, and
Yuan
,
W.
,
2019
, “
Thermal Conductivity Enhancement of Hydrated Salt Phase Change Materials Employing Copper Foam as the Supporting Material
,”
Sol. Energy Mater. Sol. Cells
,
199
, pp.
91
98
.
28.
ASTM-E1530
,
2017
, “Standard Test Method for Evaluating the Resistance to Thermal Transmission of Thin Specimens of Materials by the Guarded Heat Flow Meter Technique”, American Society for Testing and Materials, Philadelphia, PA. https://www.astm.org/e1530-99.html.
29.
Thaib
,
R.
,
Amin
,
M.
, and
Umar
,
H.
,
2019
, “
Thermal Properties of Beef Tallow/Coconut Oil Bio PCM Using t-History Method for Wall Building Applications
,”
Eur. J. Eng. Technol. Res.
,
4
(
11
), pp.
38
40
.
30.
Hong
,
H.
,
Kim
,
S. K.
, and
Kim
,
Y.-S.
,
2004
, “
Accuracy Improvement of T-History Method for Measuring Heat of Fusion of Various Materials
,”
Int. J. Refrig.
,
27
(
4
), pp.
360
366
.
31.
Huang
,
Z.
,
Xie
,
N.
,
Luo
,
Z.
,
Gao
,
X.
,
Fang
,
X.
,
Fang
,
Y.
, and
Zhang
,
Z.
,
2018
, “
Characterization of Medium-Temperature Phase Change Materials for Solar Thermal Energy Storage Using Temperature History Method
,”
Sol. Energy Mater. Sol. Cells
,
179
, pp.
152
160
.
32.
D’Avignon
,
K.
, and
Kummert
,
M.
,
2015
, “
Assessment of T-History Method Variants to Obtain Enthalpy–Temperature Curves for Phase Change Materials With Significant Subcooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041015
.
33.
Marín
,
J. M.
,
Zalba
,
B.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Determination of Enthalpy–Temperature Curves of Phase Change Materials With the Temperature-History Method: Improvement to Temperature Dependent Properties
,”
Meas. Sci. Technol.
,
14
(
2
), pp.
184
189
.
34.
Dannemand
,
M.
,
Johansen
,
J. B.
, and
Furbo
,
S.
,
2016
, “
Solidification Behavior and Thermal Conductivity of Bulk Sodium Acetate Trihydrate Composites With Thickening Agents and Graphite
,”
Sol. Energy Mater. Sol. Cells
,
145
, pp.
287
295
.
You do not currently have access to this content.