Abstract
This study investigates the performance of two solar air heater designs, S1-SAH and S2-SAH, through experimental analysis of temperature, energy gain and loss, efficiency, and Thermal-Hydraulic Performance Parameter (THPP) across mass flow rates ranging from 0.013 to 0.061 kg/s in hot climatic conditions of R.E.C Banda. The S2-SAH consistently outperformed the conventional S1-SAH, achieving a maximum energy efficiency of 79.3% at 0.051 kg/s and a peak exergy efficiency of 4.5% at 0.013 kg/s. Additionally, the highest THPP of 2.0 was recorded at 0.051 kg/s. The results highlight the superior performance and enhanced efficiency of the S2-SAH, showcasing the effectiveness of its design for improved heat transfer.
Issue Section:
Research Papers
References
1.
Singh
, S.
, Chander
, S.
, and Saini
, J. S.
, 2012
, “Exergy Based Analysis of Solar air Heater Having Discrete V-Down rib Roughness on Absorber Plate
,” Energy
, 37
(1
), pp. 749
–758
. 2.
Singh
, S.
, Singh
, B.
, Hans
, V. S.
, and Gill
, R. S.
, 2015
, “CFD (Computational Fluid Dynamics) Investigation on Nusselt Number and Friction Factor of Solar air Heater Duct Roughened With non-Uniform Cross-Section Transverse rib
,” Energy
, 84
, pp. 509
–517
. 3.
Lanjewar
, A.
, Bhagoria
, J. L.
, and Sarviya
, R. M.
, 2011
, “Experimental Study of Augmented Heat Transfer and Friction in Solar air Heater With Different Orientations of W-Rib Roughness
,” Exp. Therm. Fluid. Sci.
, 35
(6
), pp. 986
–995
. 4.
Kumar
, R.
, and Goel
, V.
, 2021
, “Unconventional Solar air Heater With Triangular Flow-Passage: A CFD Based Comparative Performance Assessment of Different Cross-Sectional rib-Roughnesses
,” Renew. Energy
, 172
, pp. 1267
–1278
. 5.
Sahu
, M. K.
, and Prasad
, R. K.
, 2016
, “Exergy Based Performance Evaluation of Solar air Heater With arc-Shaped Wire Roughened Absorber Plate
,” Renew. Energy
, 96
(Part A
), pp. 233
–243
. 6.
Altfeld
, K.
, Leiner
, W.
, and Fiebig
, M.
, 1988
, “Second law Optimization of Flat-Plate Solar air Heaters Part I: The Concept of net Exergy Flow and the Modeling of Solar air Heaters
,” Sol. Energy
, 41
(2
), pp. 127
–132
. 7.
Gupta
, M. K.
, and Kaushik
, S. C.
, 2009
, “Performance Evaluation of Solar air Heater for Various Artificial Roughness Geometries Based on Energy, Effective and Exergy Efficiencies
,” Renew. Energy
, 34
(3
), pp. 465
–476
. 8.
Kazaz
, O.
, Karimi
, N.
, and Paul
, M. C.
, 2024
, “Radiation and Nanoparticle Interaction for Enhanced Light Absorption and Heat Conversion
,” J. Mol. Liq.
, 411
, p. 125702
. 9.
Kazaz
, O.
, Karimi
, N.
, Kumar
, S.
, Falcone
, G.
, and Paul
, M. C.
, 2024
, “Thermally Enhanced Nanocomposite Phase Change Material Slurry for Solar-Thermal Energy Storage
,” J. Energy Storage
, 78
, p. 110110
. 10.
Kazaz
, O.
, Karimi
, N.
, and Paul
, M. C.
, 2024
, “Optically Functional bio-Based Phase Change Material Nanocapsules for Highly Efficient Conversion of Sunlight to Heat and Thermal Storage
,” Energy
, 305
, p. 132290
. 11.
Kazaz
, O.
, Ferraro
, R.
, Tassieri
, M.
, Kumar
, S.
, Falcone
, G.
, Karimi
, N.
, and Paul
, M. C.
, 2023
, “Sensible Heat Thermal Energy Storage Performance of Mono and Blended Nanofluids in a Free Convective-Radiation Inclined System
,” Case Stud. Therm. Eng.
, 51
, p. 103562
. 12.
Kurtbas
, I.
, and Durmuş
, A.
, 2004
, “Efficiency and Exergy Analysis of a new Solar air Heater
,” Renew. Energy
, 29
(9
), pp. 1489
–1501
. 13.
Öztürk
, H. H.
, and Demirel
, Y.
, 2004
, “Exergy-Based Performance Analysis of Packed-bed Solar air Heaters
,” Int. J. Energy Res.
, 28
(5
), pp. 423
–432
. 14.
Alta
, D.
, Bilgili
, E.
, Ertekin
, C.
, and Yaldiz
, O.
, 2010
, “Experimental Investigation of Three Different Solar air Heaters: Energy and Exergy Analyses
,” Appl. Energy
, 87
(10
), pp. 2953
–2973
. 15.
Akpinar
, E. K.
, and Koçyiĝit
, F.
, 2010
, “Energy and Exergy Analysis of a new Flat-Plate Solar air Heater Having Different Obstacles on Absorber Plates
,” Appl. Energy
, 87
(11
), pp. 3438
–3450
. 16.
Lalji
, M. K.
, Sarviya
, R. M.
, and Bhagoria
, J. L.
, 2012
, “Exergy Evaluation of Packed bed Solar air Heater
,” Renew. Sustain. Energy Rev.
, 16
(8
), pp. 6262
–6267
. 17.
Bayrak
, F.
, Oztop
, H. F.
, and Hepbasli
, A.
, 2013
, “Energy and Exergy Analyses of Porous Baffles Inserted Solar air Heaters for Building Applications
,” Energy Build.
, 57
, pp. 338
–345
. 18.
Benli
, H.
, 2013
, “Experimentally Derived Efficiency and Exergy Analysis of a new Solar air Heater Having Different Surface Shapes
,” Renew. Energy
, 50
, pp. 58
–67
. 19.
Bouadila
, S.
, Lazaar
, M.
, Skouri
, S.
, Kooli
, S.
, and Farhat
, A.
, 2014
, “Energy and Exergy Analysis of a new Solar air Heater With Latent Storage Energy
,” Int. J. Hydrogen Energy
, 39
(27
), pp. 15266
–15274
. 20.
Yadav
, A. S.
, and Bhagoria
, J. L.
, 2014
, “A Numerical Investigation of Square Sectioned Transverse rib Roughened Solar air Heater
,” Int. J. Therm. Sci.
, 79
, pp. 111
–131
. 21.
Jin
, D.
, Zhang
, M.
, Wang
, P.
, and Xu
, S.
, 2015
, “Numerical Investigation of Heat Transfer and Fluid Flow in a Solar air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,” Energy
, 89
, pp. 178
–190
. 22.
Kabeel
, A. E.
, Khalil
, A.
, Shalaby
, S. M.
, and Zayed
, M. E.
, 2016
, “Investigation of the Thermal Performances of Flat, Finned, and v-Corrugated Plate Solar Air Heaters
,” ASME J. Sol. Energy Eng.
, 138
(5
), p. 051004
. 23.
Acır
, A.
, Canlı
, M. E.
, Ata
, İ
, and Çakıroğlu
, R.
, 2017
, “Parametric Optimization of Energy and Exergy Analyses of a Novel Solar air Heater With Grey Relational Analysis
,” Appl. Therm. Eng.
, 122
, pp. 330
–338
. 24.
Matheswaran
, M. M.
, Arjunan
, T. V.
, and Somasundaram
, D.
, 2018
, “Analytical Investigation of Solar air Heater With jet Impingement Using Energy and Exergy Analysis
,” Sol. Energy
, 161
, pp. 25
–37
. 25.
Abuşka
, M.
, 2018
, “Energy and Exergy Analysis of Solar air Heater Having new Design Absorber Plate With Conical Surface
,” Appl. Therm. Eng.
, 131
, pp. 115
–124
. 26.
Ghiami
, A.
, and Ghiami
, S.
, 2018
, “Comparative Study Based on Energy and Exergy Analyses of a Baffled Solar air Heater With Latent Storage Collector
,” Appl. Therm. Eng.
, 133
, pp. 797
–808
. 27.
Cuzminschi
, M.
, Gherasim
, R.
, Girleanu
, V.
, Zubarev
, A.
, and Stamatin
, I.
, 2018
, “Innovative Thermo-Solar air Heater
,” Energy Build.
, 158
, pp. 964
–970
. 28.
Kumar
, A.
, and Layek
, A.
, 2019
, “Energetic and Exergetic Performance Evaluation of Solar air Heater With Twisted rib Roughness on Absorber Plate
,” J. Cleaner Prod.
, 232
, pp. 617
–628
. 29.
Jin
, D.
, Quan
, S.
, Zuo
, J.
, and Xu
, S.
, 2019
, “Numerical Investigation of Heat Transfer Enhancement in a Solar air Heater Roughened by Multiple V-Shaped Ribs
,” Renew. Energy
, 134
, pp. 78
–88
. 30.
Farhan
, A. A.
, Obaid
, Z. A. H.
, and Hussien
, S. Q.
, 2020
, “Analysis of Exergetic Performance for a Solar air Heater With Metal Foam Fins
,” Heat Transfer
, 49
(5
), pp. 3190
–3204
. 31.
Singh
, S.
, 2020
, “Experimental and Numerical Investigations of a Single and Double Pass Porous Serpentine Wavy Wiremesh Packed bed Solar air Heater
,” Renew. Energy
, 145
, pp. 1361
–1387
. 32.
Luan
, N. T.
, and Phu
, N. M.
, 2020
, “Thermohydraulic Correlations and Exergy Analysis of a Solar air Heater Duct With Inclined Baffles
,” Case Stud. Therm. Eng.
, 21
, p. 100672
. 33.
Sari
, A.
, Sadi
, M.
, Shafiei Sabet
, G.
, Mohammadiun
, M.
, and Mohammadiun
, H.
, 2021
, “Experimental Analysis and Exergetic Assessment of the Solar air Collector With Delta Winglet Vortex Generators and Baffles
,” J. Therm. Anal. Calorim.
, 145
(3
), pp. 867
–885
. 34.
Kumar
, D.
, Mahanta
, P.
, and Kalita
, P.
, 2021
, “Performance Analysis of a Solar air Heater Modified With zig-zag Shaped Copper Tubes Using Energy-Exergy Methodology
,” Sustain. Energy Technol. Assessm.
, 46
, p. 101222
. 35.
Saravanakumar
, P. T.
, Somasundaram
, D.
, and Matheswaran
, M. M.
, 2020
, “Exergetic Investigation and Optimization of arc Shaped rib Roughened Solar air Heater Integrated With Fins and Baffles
,” Appl. Therm. Eng.
, 175
, p. 115316
. 36.
Abo-Elfadl
, S.
, S. Yousef
, M.
, El-Dosoky
, M. F.
, and Hassan
, H.
, 2021
, “Energy, Exergy, and Economic Analysis of Tubular Solar air Heater With Porous Material: An Experimental Study
,” Appl. Therm. Eng.
, 196
, p. 117294
. 37.
Jayranaiwachira
, N.
, Promvonge
, P.
, Thianpong
, C.
, and Skullong
, S.
, 2022
, “Thermal-Hydraulic Performance of Solar Receiver Duct With Inclined Punched-Ribs and Grooves
,” Case Stud. Therm. Eng.
, 39
, p. 102437
. 38.
Promvonge
, P.
, and Skullong
, S.
, 2022
, “Thermal-Hydraulic Performance Enhancement of Solar Receiver Channel by Flapped V-Baffles
,” Chem. Eng. Res. Des.
, 182
, pp. 87
–97
. 39.
Chaudhri
, K.
, Bhagoria
, J. L.
, and Kumar
, V.
, 2022
, “Transverse Wedge-Shaped rib Roughened Solar air Heater (SAH)—Exergy Based Experimental Investigation
,” Renew. Energy
, 184
, pp. 1150
–1164
. 40.
Alam
, T.
, Siddiqui
, M. I. H.
, Alshehri
, H.
, Ali
, M. A.
, Blecich
, P.
, and Saurabh
, K.
, 2022
, “Exergy-Based Thermo-Hydraulic Performance of Roughened Absorber in Solar Air Heater Duct
,” Appl. Sci.
, 12
(3
), p. 1696
. 41.
Jain
, S. K.
, Misra
, R.
, and Agrawal
, G. D.
, 2022
, “Experimental Investigation and Optimizing the Parameters of a Solar Air Heater Having Broken Arc-Shaped Ribs Using Hybrid Entropy-VIKOR Technique
,” ASME J. Sol. Energy Eng.
, 144
(6
), p. 061013
. 42.
Nidhul
, K.
, Yadav
, A. K.
, Anish
, S.
, and Arunachala
, U. C.
, 2022
, “Thermo-Hydraulic and Exergetic Performance of a Cost-Effective Solar air Heater: CFD and Experimental Study
,” Renew. Energy
, 184
, pp. 627
–641
. 43.
Gogada
, S.
, Roy
, S.
, Gupta
, A.
, Das
, B.
, and Ali Ehyaei
, M.
, 2022
, “Energy and Exergy Analysis of Solar air Heater With Trapezoidal Ribs Based Absorber: A Comparative Analysis
,” Energy Sci. Eng.
, 11
(2
), pp. 585
–605
. 44.
Gürel
, A. E.
, Yıldız
, G.
, Ergün
, A.
, and Ceylan
, İ.
, 2022
, “Exergetic, Economic and Environmental Analysis of Temperature Controlled Solar air Heater System
,” Clean. Eng. Technol.
, 6
, p. 100369
. 45.
Suresh Bhuvad
, S.
, Husain Rizvi
, I.
, and Azad
, R.
, 2023
, “Apex-up Discrete-arc rib Roughened Solar air Heater-Energy and Exergy Based Experimental Study
,” Sol. Energy
, 258
, pp. 361
–371
. 46.
Shankar
, R.
, Kumar
, R.
, Pandey
, A. K.
, and Thakur
, D. S.
, 2024
, “Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs
,” ASME J. Sol. Energy Eng.
, 146
(3
), p. 031005
. 47.
Lal Sharma
, S.
, and Debbarma
, A.
, 2024
, “Numerical Investigation of Reversed Flow Solar Air Heater Roughened With Circular- and Triangular-Shaped Tubes
,” ASME J. Sol. Energy Eng.
, 146
(2
), p. 021003
. 48.
Hassan
, A.
, Nikbakht
, A. M.
, Fawzia
, S.
, Yarlagadda
, P.
, and Karim
, A.
, 2024
, “A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters Through an Energy and Exergy Analysis
,” Energies
, 17
(7
), p. 1526
. 49.
Arunkumar
, H. S.
, Kumar
, S.
, and Vasudeva Karanth
, K.
, 2024
, “Energy Exergy and Economic Analysis of a Multiple Inlet Solar air Heater for Augmented Thermohydraulic Performance
,” Appl. Therm. Eng.
, 246
, p. 122981
. 50.
Alrashidi
, A.
, Altohamy
, A. A.
, Abdelrahman
, M. A.
, and Elsemary
, I. M. M.
, 2024
, “Energy and Exergy Experimental Analysis for Innovative Finned Plate Solar air Heater
,” Case Stud. Therm. Eng.
, 59
, p. 104570
. 51.
Shankar
, R.
, Kumar
, R.
, Pandey
, A. K.
, and Thakur
, D. S.
, 2024
, “A Comprehensive Review of Rectangular Duct Solar air Heaters Featuring Artificial Roughness
,” Clean Energy
, 8
(5
), pp. 186
–217
. 52.
Cengel
, Y. A.
, and Ghajar
, A. J.
, 2020
, Heat and Mass Transfer: Fundamentals and Applications
, McGraw-Hill Global Education Holding, LLC
, New York
, p. 1057
.53.
ASHRAE
, 1977
, Methods of Testing to Determine the Thermal Performance of Solar Collectors
, ASHRAE
, New York
. Standard No. 93-1977.54.
Singh
, Y.
, and Pal
, N.
, 2020
, “Obstacles and Comparative Analysis in the Advancement of Photovoltaic Power Stations in India
,” Sustain. Comput.: Inform. Syst.
, 25
, p. 100372
. 55.
Esen
, H.
, 2008
, “Experimental Energy and Exergy Analysis of a Double-Flow Solar air Heater Having Different Obstacles on Absorber Plates
,” Build. Environ.
, 43
(6
), pp. 1046
–1054
. 56.
Garg
, H. P.
, and Prakash
, J.
, 2000
, Solar Energy: Fundamentals and Applications
, McGraw-Hill Education Pvt Limited
, India
, p. 434
.57.
John
, D.
, 1980
, Solar Engineering for Thermal Process
, John Wiley & Sons
, New York
.58.
Ansari
, M.
, and Bazargan
, M.
, 2018
, “Optimization of Flat Plate Solar air Heaters With Ribbed Surfaces
,” Appl. Therm. Eng.
, 136
, pp. 356
–363
. 59.
Webb
, R. L.
, Eckert
, E. R. G.
, and Goldstein
, R. J.
, 1971
, “Heat Transfer and Friction in Tubes With Repeated-rib Roughness
,” Int. J. Heat Mass Transfer
, 14
(4
), pp. 601
–617
. 60.
Svirezhev
, Y. M.
, Steinborn
, W. H.
, and Pomaz
, V. L.
, 2003
, “Exergy of Solar Radiation: Global Scale
,” Ecol. Modell.
, 169
(2–3
), pp. 339
–346
. 61.
Petela
, R.
, 1964
, “Exergy of Heat Radiation
,” ASME J. Heat Transfer
, 86
(2
), pp. 187
–192
. 62.
Ghritlahre
, H. K.
, and Prasad
, R. K.
, 2018
, “Exergetic Performance Prediction of Solar air Heater Using MLP, GRNN and RBF Models of Artificial Neural Network Technique
,” J. Environ. Manage.
, 223
, pp. 566
–575
. 63.
Moffat
, R. J.
, 1988
, “Describing the Uncertainties in Experimental Results
,” Exp. Therm. Fluid. Sci.
, 1
(1
), pp. 3
–17
. 64.
(Info) Climate of Bundelkhand Region
, 2024
, Temperature Pattern in Bundelkhand
, Bundelkhand Research Portal
, Bundelkhand Uttar Pradesh
.65.
Madadi Avargani
, V.
, Zendehboudi
, S.
, Rahimi
, A.
, and Soltani
, S.
, 2022
, “Comprehensive Energy, Exergy, Enviro-Exergy, and Thermo-Hydraulic Performance Assessment of a Flat Plate Solar air Heater With Different Obstacles
,” Appl. Therm. Eng.
, 203
, p. 117907
. 66.
Muthukumaran
, J.
, and Senthil
, R.
, 2022
, “Experimental Performance of a Solar air Heater Using Straight and Spiral Absorber Tubes With Thermal Energy Storage
,” J. Energy Storage
, 45
, p. 103796
. 67.
Hassan
, H.
, Osman
, O. O.
, Abdelmoez
, M. N.
, and abo-Elfadl
, S.
, 2023
, “Energy and Exergy Evaluation of new Design Nabla Shaped Tubular Solar air Heater (∇ TSAH): Experimental Investigation
,” Energy
, 276
, p. 127451
. 68.
Pandey
, R.
, 2024
, “Critical Analysis of the Energy and Exergy Performance of an air Heater Duct With Perforated 60-Degree V-Down Baffles Affixed to the Heated Surface
,” Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
, p. 09544089241234617
. 69.
Pachori
, H.
, Choudhary
, T.
, Sheorey
, T.
, Kumar Shukla
, A.
, and Verma
, V.
, 2024
, “A Novel Energy, Exergy and Sustainability Analysis of a Decentralized Solar air Heater Integrated With V-Shaped Artificial Roughness for Solar Thermal Application
,” Sustain. Energy Technol. Assessm.
, 66
, p. 103816
. Copyright © 2025 by ASME
You do not currently have access to this content.