A novel approach is proposed for precise control of two-phase spray evaporative cooling for thermal management of road vehicle internal combustion (IC) engines. A reduced-order plant model is first constructed by combining published spray evaporative cooling correlations with approximate governing heat transfer equations appropriate for IC engine thermal management. Control requirements are specified to allow several objectives to be met simultaneously under different load conditions. A control system is proposed and modeled in abstract form to achieve spray evaporative cooling of a gasoline engine, with simplifying assumptions made about the characteristics of the coolant pump, spray nozzle, and condenser. The system effectiveness is tested by simulation to establish its ability to meet key requirements, particularly concerned with precision control during transients resulting from rapid engine load variation. The results confirm the robustness of the proposed control strategy in accurately tracking a specified temperature profile at various constant load conditions, and also in the presence of realistic transient load variation.

References

1.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, New York.
2.
Gaugler
,
R. E.
,
1966
, “An Experimental Study of Spray Cooling of High Temperature Surfaces,” Ph.D. thesis, Carnegie Institute of Technology, Pittsburg, CA.
3.
Nukiyama
,
S.
,
1966
, “
Maximum and Minimum Values of Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1419
1433
.
4.
Wachters
,
L. H. J.
, and
Westerling
,
N. A. J.
,
1966
, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
,
21
(
11
), pp.
1047
1056
.
5.
Eugene
,
A.
, and
Mizikar
,
A.
,
1970
, “
Spray Cooling Investigation for Continuous Casting of Billets and Blooms
,”
Iron Steel Eng.
,
47
(
6
), pp.
53
60
.
6.
Pederson
,
C. O.
,
1970
, “
An Experimental Study of the Dynamic Behavior and Heat Transfer Characteristics of Water Drops Impinging Upon a Heated Surface
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
369
381
.
7.
Hoogendorn
,
C. J.
, and
den Hond
,
R.
,
1974
, “
Leidenfrost Temperature and Heat-Transfer Coefficients for Water Sprays Impinging on a Hot Surface
,”
Fifth International Heat Transfer Conference
, Tokyo, Japan, Sept. 3–7, pp.
135
138
.
8.
Toda
,
S.
,
1972
, “
A Study of Mist Cooling (First Report: Investigation of Mist Cooling)
,”
Heat Transfer: Jpn. Res.
,
1
, pp.
39
50
.
9.
Toda
,
S.
,
1974
, “
A Study of Mist Cooling (Second Report: Theory of Mist Cooling and Its Fundamental Experiments)
,”
Heat Transfer: Jpn. Res.
,
3
, pp.
1
44
.
10.
Sasaki
,
K.
,
Sugatani
,
Y.
, and
Kawasaki
,
M.
,
1979
, “
Heat Transfer in Spray Cooling on Hot Surface
,”
Tetsu-to-Hagane (J. Iron Steel Inst. Jpn.)
,
65
(
1
), pp.
90
96
.
11.
Monde
,
M.
,
Kusuda
,
H.
, and
Uehara
,
H.
,
1980
, “
Burnout Heat Flux in Saturated Forced Convection Boiling With Two or More Impinging Jets
,”
Trans. JSME
,
46
, pp.
1834
1843
.
12.
Bolle
,
L.
, and
Moureau
,
J. C.
,
1982
,
Spray Cooling of Hot Surfaces
,
Multiphase Science Technology, Hemisphere
,
Washington, DC
.
13.
Shoji
,
M.
,
Wakunaga
,
T.
, and
Kodama
,
K.
,
1984
, “
Heat Transfer From a Heated Surface to an Impinging Subcooled Droplet (Heat Transfer Characteristics in the Non-Wetting Regime)
,”
Trans Jpn. Soc. Mech. Eng.
,
50
(
451
), pp.
716
722
.
14.
Yao
,
S. C.
, and
Choi
,
K. J.
,
1987
, “
Heat Transfer Experiments of Mono-Dispersed Vertically Impacting Sprays
,”
Int. J. Multiphase Flow
,
13
(
5
), pp.
639
648
.
15.
Choi
,
K. J.
, and
Yao
,
S. C.
,
1987
, “
Mechanisms of Film Boiling Heat Transfer of Normally Impacting Spray
,”
Int. J. Heat Mass Transfer
,
30
(
2
), pp.
311
318
.
16.
Katto
,
Y.
, and
Yokoya
,
S.
,
1988
, “
Critical Heat Flux on a Disk Heater Cooled by a Circular Jet of Saturated Liquid Impinging at the Center
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
219
227
.
17.
Deb
,
S.
, and
Yao
,
S. C.
,
1989
, “
Analysis on Film Boiling Heat Transfer of Impacting Sprays
,”
Int. J. Heat Mass Transfer
,
32
(
11
), pp.
2099
2112
.
18.
Mudawar
,
I.
, and
Valentine
,
W. S.
,
1989
, “
Determination of the Local Quench Curve for Spray-Cooled Metallic Surface
,”
J. Heat Treat.
,
7
(
2
), pp.
107
121
.
19.
Pais
,
M.
,
Tilton
,
D.
,
Chow
,
L.
, and
Mahefky
,
E.
,
1989
, “
High-Heat-Flux, Low-Superheat Evaporative Spray Cooling
,”
AIAA
Paper No. AIAA-89-0241.
20.
Tilton
,
D. E.
,
1989
, “Spray Cooling,” Ph.D. dissertation, University of Kentucky, Lexington, KY.
21.
Sehmbey
,
M. S.
,
Pais
,
M. R.
, and
Chow
,
L. C.
,
1990
, “
Effect of Surface Material Properties and Surface Characteristics Inevaporative Spray Cooling
,”
AIAA
Paper No. 1990-1728.
22.
Klinzing
,
W. P.
,
Rozzi
,
J. C.
, and
Mudawar
,
I.
,
1992
, “
Film and Transition Boiling Correlations for Quenching of Hot Surfaces With Water Sprays
,”
J. Heat Treat.
,
9
(
2
), pp.
91
103
.
23.
Tilton
,
D. E.
,
Tilton
,
C. L.
,
Moore
,
C. J.
, and
Ackerman
,
R. E.
,
1994
, “
Spray Cooling for the 3D Cube Computer
,”
Intersociety Conference on Thermal Phenomena in Electronic Systems
, Washington, DC, May 4–7, pp. 169–176.
24.
Yao
,
S. C.
, and
Cox
,
T. L.
,
2002
, “
A General Heat Transfer Correlation for Impacting Water Sprays on High-Temperature Surfaces
,”
Exp. Heat Transfer
,
15
(
4
), pp.
207
219
.
25.
Nasr
,
G. G.
,
Sharief
,
R.
,
James
,
D. D.
, and
Jeong
,
J. R.
,
1999
, “
Studies of High Pressure Water Sprays From Full-Cone Atomizers
,” Institute for Liquid Atomization and Spray Systems (
ILASS-Europe'99
), Toulouse, France, July 5–7, pp.
1
6
.https://www.researchgate.net/publication/282876170_Studies_of_High_Pressure_Water_Sprays_from_Full-Cone_Atomizers
26.
Yang
,
J.
,
Chow
,
L. C.
, and
Pais
,
M. R.
,
1996
, “
Nucleate Boiling Heat Transfer in Spray Cooling
,”
ASME J. Heat Transfer
,
188
(
3
), pp.
668
671
.
27.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1997
, “
Film Boiling Heat Transfer of Droplet Streams and Sprays
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2579
2593
.
28.
Hsieh
,
S.-S.
,
Fan
,
T.-C.
, and
Tsai
,
H.-H.
,
2004
, “
Spray Cooling Characteristics of Water and R-134a—Part-I: Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5703
5712
.
29.
Hsieh
,
S.-S.
,
Fan
,
T.-C.
, and
Tsai
,
H.-H.
,
2004
, “
Spray Cooling Characteristics of Water and R-134a—Part-II: Transient Cooling
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5713
5724
.
30.
Estes
,
K. A.
, and
Mudawar
,
I.
,
1995
, “
Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
2985
2996
.
31.
Mudawar
,
I.
, and
Estes
,
K. A.
,
1996
, “
Optimizing and Predicting CHF in Spray Cooling of a Square Surface
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
672
679
.
32.
Aguilar
,
G.
,
Majaron
,
B.
,
Verkruysse
,
W.
,
Zhou
,
Y.
,
Nelson
,
J. S.
, and
Lavernia
,
E. J.
,
2001
, “
Theoretical and Experimental Analysis of Droplet Diameter, Temperature, and Avaporation Rate Evolution in Cryogenic Sprays
,”
Int. J. Heat Mass Transfer
,
44
(
17
), pp.
3201
3211
.
33.
Rini
,
D. P.
,
Chen
,
R.-H.
, and
Chow
,
L. C.
,
2002
, “
Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
63
72
.
34.
Di Marzo
,
M.
,
Tartarini
,
P.
,
Liao
,
Y.
,
Evans
,
D.
, and
Baum
,
H.
,
1993
, “
Evaporative Cooling Due to a Gently Deposited Droplet
,”
Int. J. Heat Mass Transfer
,
36
(
17
), pp.
4133
4139
.
35.
Inada
,
S.
, and
Yang
,
W.-J.
,
1994
, “
Film Boiling Heat Transfer for Saturated Drops Impinging on a Heated Surface
,”
Int. J. Heat Mass Transfer
,
37
(
16
), pp.
2588
2591
.
36.
Milke
,
J. A.
,
Tinker
,
S. C.
, and
di Marzo
,
M.
,
1997
, “
Effect of Dissolved Gases on Spray Evaporative Cooling With Water
,”
Fire Technol.
,
33
(
2
), pp.
99
114
.
37.
Rybicki
,
J. R.
, and
Mudawar
,
I.
,
2006
, “
Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
5
16
.
38.
Selvam
,
R. P.
,
Lin
,
L.
, and
Ponnappan
,
R.
,
2006
, “
Direct Simulation of Spray Cooling: Effect of Vapour Bubble Growth and Liquid Droplet Impact on Heat Transfer
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4265
4278
.
39.
Visaria
,
M.
, and
Mudawar
,
I.
,
2008
, “
Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5269
5278
.
40.
Visaria
,
M.
, and
Mudawar
,
I.
,
2008
, “
Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2398
2410
.
41.
Visaria
,
M.
, and
Mudawar
,
I.
,
2009
, “
Application of Two-Phase Spray Cooling for Thermal Management of Electronic Devices
,”
IEEE Trans Compon. Packag. Technol.
,
32
(
4
), pp.
784
793
.
42.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
,
2009
, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp. 501–512.
43.
Tilton
,
D. E.
, and
Tilton
,
C. L.
,
2010
, “Thermal Management System for Evaporative Spray Cooling,” U.S. Patent No. U.S. 7,836,706 B2.
44.
Cheng
,
W.-L.
,
Zhang
,
W.-W.
,
Chen
,
H.
, and
Hu
,
L.
,
2016
, “
Spray Cooling and Flash Evaporation Cooling: The Current Development and Application
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
614
628
.
45.
Cader
,
T.
,
Westra
,
L. J.
, and
Eden
,
R. C.
,
2004
, “
Spray Cooling Thermal Management for Increased Device Reliability
,”
IEEE Trans Device Mater. Reliab.
,
4
(
4
), pp.
605
613
.
46.
Silk
,
E. A.
,
Golliher
,
E. L.
, and
Paneer Selvam
,
R.
,
2008
, “
Spray Cooling Heat Transfer: Technology Overview and Assessment of Future Challenges for Micro-Gravity Application
,”
Energy Convers. Manage
,
49
(
3
), pp.
453
468
.
47.
Anglart
,
H.
,
Alavyoon
,
F.
, and
Novarini
,
R.
,
2010
, “
Study of Spray Cooling of a Pressure Vessel Head of a Boiling Water Reactor
,”
Nucl. Eng. Des.
,
240
(
2
), pp.
252
257
.
48.
Wagner
,
J.
,
Marotta
,
E.
, and
Paradis
,
I.
,
2001
, “
Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation
,”
SAE
Paper No. 2001-01-1014.
49.
Wagner
,
J.
,
Ghone
,
M.
,
Dawson
,
D.
, and
Marotta
,
E.
,
2002
, “
Coolant Flow Control Strategies for Automotive Thermal Management Systems
,”
SAE
Paper No. 2002-01-0713.
50.
Wagner
,
J.
,
Srinivasan
,
V.
, and
Dawson
,
D.
,
2003
, “
Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems
,”
SAE
Paper No. 2003-01-0272.
51.
Eberth
,
J.
,
Wagner
,
J.
,
Afshar
,
B.
, and
Foster
,
R.
,
2004
, “
Modeling and Validation of Automotive ‘Smart’ Thermal Management System Architecture
,”
SAE
Paper No. 2004-01-0048.
52.
Henry
,
R.
,
Koo
,
J.
, and
Richter
,
C.
,
2001
, “
Model Development, Simulation and Validation, of Power Train Cooling System for a Truck Application
,”
SAE
Paper No. 2001-01-1731.
53.
Setlur
,
P.
,
Wagner
,
J.
,
Dawson
,
D.
, and
Marotta
,
E.
,
2005
, “
An Advanced Engine Thermal Management System: Nonlinear Control and Test
,”
IEEE/ASME Trans. Mechatronics
,
10
(
2
), pp.
210
220
.
54.
Page
,
R.
,
Hnatczuk
,
W.
, and
Kozierowski
,
J.
,
2005
, “
Thermal Management for the 21st Century—Improved Thermal Control & Fuel Economy in an Army Medium Tactical Vehicle
,”
SAE
Paper No. 2005-01-2068.
55.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.
56.
Ghodbane
,
M.
, and
Holman
,
J. P.
,
1991
, “
Experimental Study of Spray Cooling With Freon-113
,”
Int. J. Heat Mass Transfer
,
34
(
4–5
), pp.
1163
1174
.
57.
BETE, 2017, “
PJ: Smallest Physical Size
,” BETE Fog Nozzle, Inc., Greenfield, MA, accessed Mar. 21, 2017, http://www.bete.com/pdfs/BETE_PJ-metric.pdf
58.
Jafari
,
S.
,
Dunne
,
J. F.
,
Langari
,
M.
,
Yang
,
Z.
,
Pirault
,
J.-P.
,
Long
,
C. A.
, and
Thalackottore-Jose
,
J.
,
2017
, “
A Review of Evaporative Cooling System Concepts for Engine Thermal Management in Motor Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
231
(
8
), pp.
1126
1146
.
59.
Tajjudin
,
M.
,
Rahiman
,
M. H. F.
,
Arshad
,
N. M.
, and
Adnan
,
R.
,
2013
, “
Robust Fractional-Order PI Controller With Ziegler-Nichols Rules
,”
World Acad. Sci., Eng. Technol. Int. J. Electr. Comput. Eng.
,
7
(
7
), pp.
1034
1041
.https://waset.org/publications/16532/robust-fractional-order-pi-controller-with-ziegler-nichols-rules
You do not currently have access to this content.