Abstract

Structural inserts are employed to enhance the heat transfer in channel flow with the expense of thermal performance. The present investigation employs the wavy porous screens as inserts in an air channel and measures the pressure drop and heat transfer along the channel. The wave vectors are parallel to the flow and in point contact at the tips with the channel walls. The pores in the insert generate turbulence to enhance the heat transfer from the channel walls with a moderate pressure penalty because of the low blockage ratio. The objectives are to investigate the effects of wavelength (λ), porosity (ξ), and height (H) of the sinusoidal wave of the insert as well as the Reynolds number (Re) on the friction factors (f) and Nusselt numbers (Nu). Twelve inserts are formed from the flat metal mesh screens for testing between the Reynolds number (Re) of 400 and 35,000. The results of (f, Nu) and smooth channel-based enhancements (f/f0, Nu/Nu0) are affected the most by Re followed by λ and then ξ. The values of both (f/f0, Nu/Nu0) increase significantly as the Reynolds number increases in Re < 3000. However, both the (f/f0, Nu/Nu0) decrease little as both the (λ, ξ) increase at all Re. The performance factor index, (Nu/Nu0)/(f/f0)(1/3) > 1.0 irrespective of (λ, ξ, H) only when Re is about 3000. The correlations developed for the f, Nu, and performance factor provide reasonable predictions of the experimental results.

References

References
1.
Webb
,
R. L.
, and
Kim
,
N.-H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor and Francis
,
Oxon, UK
, pp.
57
60
,
210
227
,
246
269
.
2.
Kays
,
W. M.
, and
London
,
A. L.
,
1964
,
Compact Heat Exchangers
, 2nd ed.,
McGraw-Hill
,
NY
, pp.
155
,
219
.
3.
Jeng
,
T.-M.
,
Tzeng
,
S.-C.
, and
Tang
,
F.-Z.
,
2009
, “
Fluid Flow and Heat Transfer Characteristics of the Porous Metallic Heat Sink With a Conductive Cylinder Partially Filled in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4216
4227
. 10.1016/j.ijheatmasstransfer.2010.05.044
4.
Tong
,
T. W.
,
Sharatchandra
,
M. C.
, and
Gdoura
,
Z.
,
1993
, “
Using Porous Inserts to Enhance Heat Transfer in Laminar Fully-Developed Flows
,”
Int. Commun. Heat Mass Transfer
,
20
(
6
), pp.
761
770
. 10.1016/0735-1933(93)90030-Y
5.
Kahalerras
,
H.
, and
Targui
,
N.
,
2008
, “
Numerical Analysis of Heat Transfer Enhancement in a Double Pipe Heat Exchanger With Porous Fins
,”
Int. J. Numer. Methods Heat Fluid Flow
,
18
(
5
), pp.
593
617
. 10.1108/09615530810879738
6.
Suri
,
A. R. S.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2018
, “
Experimental Investigation of Heat Transfer and Fluid Flow Behaviour in Multiple Square Perforated Twisted Tape With Square Wing Inserts Heat Exchanger Tube
,”
Heat Mass Transfer
,
54
(
6
), pp.
1813
1826
. 10.1007/s00231-018-2290-x
7.
Alhusseny
,
A.
,
Turan
,
A.
, and
Nasser
,
A.
,
2015
, “
Developing Convective Flow in a Square Channel Partially Filled With a High Porosity Metal Foam and Rotating in a Parallel-Mode
,”
Int. J. Heat Mass Transfer
,
90
, pp.
578
590
. 10.1016/j.ijheatmasstransfer.2015.06.080
8.
Chen
,
C.-C.
,
Huang
,
P. C.
, and
Hwang
,
H. Y.
,
2013
, “
Enhanced Forced Convective Cooling of Heat Sources by Metal-Foam Porous Layers
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
356
373
. 10.1016/j.ijheatmasstransfer.2012.11.041
9.
Lu
,
W.
,
Zhang
,
T.
, and
Yang
,
M.
,
2016
, “
Analytical Solution of Forced Convective Heat Transfer in Parallel-Plate Channel Partially Filled With Metallic Foams
,”
Int. J. Heat Mass Transfer
,
100
, pp.
718
727
. 10.1016/j.ijheatmasstransfer.2016.04.047
10.
Park
,
S. H.
,
Kim
,
T. H.
, and
Jeong
,
J. H.
,
2016
, “
Experimental Investigation of the Convective Heat Transfer Coefficient for Open-Cell Porous Metal Fins at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
100
, pp.
608
614
. 10.1016/j.ijheatmasstransfer.2016.04.114
11.
Wang
,
B.
,
Hong
,
Y.
,
Hou
,
X.
,
Xu
,
Z.
,
Wang
,
P.
,
Fang
,
X.
, and
Ruan
,
X.
,
2015
, “
Numerical Configuration Design and Investigation of Heat Transfer Enhancement in Pipes Filled With Gradient Porous Materials
,”
Energy Convers. Manage.
,
105
, pp.
206
215
. 10.1016/j.enconman.2015.07.064
12.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
. 10.1115/1.1287170
13.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2016
, “
Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Non-Metal Foams
,”
ASME J. Heat Transfer
,
138
(
11
), p.
114502
. 10.1115/1.4033811
14.
Mohammadian
,
S. K.
,
Rassoulinejad-Mousavi
,
S. M.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Improvement of an Air-Cooled High-Power Lithium-Ion Battery by Embedding Metal Foam
,”
J. Power Sources
,
296
, pp.
305
313
. 10.1016/j.jpowsour.2015.07.056
15.
Maerefat
,
M.
,
Mahmoudi
,
S. Y.
, and
Mazaheri
,
K.
,
2011
, “
Numerical Simulation of Forced Convection Enhancement in a Pipe by Porous Inserts
,”
Heat Transfer Eng.
,
32
(
1
), pp.
45
56
. 10.1080/01457631003732854
16.
Santos
,
N. B.
, and
de Lemos
,
M. J. S.
,
2006
, “
Flow and Heat Transfer in a Parallel-Plate Channel With Porous and Solid Baffles
,”
Numer. Heat Transfer, Part A
,
49
(
5
), pp.
471
494
. 10.1080/10407780500325001
17.
Davari
,
A.
, and
Maerefat
,
M.
,
2016
, “
Numerical Analysis of Fluid Flow and Heat Transfer in Entrance and Fully Developed Regions of a Channel With Porous Baffles
,”
ASME J. Heat Transfer
,
138
(
6
), p.
062601
. 10.1115/1.4032638
18.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
,
2004
, “
Experimental Investigation of the Potential of Metallic Porous Inserts in Enhancing Forced Convective Heat Transfer
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
540
545
. 10.1115/1.1773586
19.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
,
2004
, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
4939
4952
. 10.1016/j.ijheatmasstransfer.2004.06.014
20.
Torii
,
S.
, and
Yang
,
W.-J.
,
2007
, “
Thermal-Fluid Flow Transport Phenomenon Over Slot-Perforated Flat Plates Placed in Narrow Channel
,”
J. Thermophys. Heat Transfer
,
21
(
2
), pp.
346
351
. 10.2514/1.25872
21.
Mahmood
,
G. I.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2015
, “
Experimental Pressure Drop and Heat Transfer in a Rectangular Channel With a Sinusoidal Porous Screen
,”
ASME J. Heat Transfer
,
137
(
4
), p.
042601
. 10.1115/1.4029349
22.
Cramer
,
L.
,
Mahmood
,
G. I.
, and
Meyer
,
J. P.
,
2018
, “
Thermohydraulic Performance of a Channel Employing Wavy Porous Inserts
,”
Heat Transfer Res.
,
49
(
18
), pp.
1867
1883
. 10.1615/HeatTransRes.v49.i18.80
23.
International Standard Organization
,
ISO 5167-1980 (E)
,
Measurement of Fluid Flow by Means of Orifice Plates, Nozzles and Venture Tubes Inserted in Circular Cross-Section Conduits Running Full
,
1980-07-15
.
24.
Cramer
,
L.
,
2018
, “
Enhancement of the Thermal Performance of Solar Heat Exchanges With Porous Inserts
,”
M.Eng. thesis
,
University of Pretoria
.
25.
Beckwith
,
T. G.
,
Marangoni
,
R. D.
, and
Lienhard
,
J. H.
,
2007
,
Mechanical Measurements
, 6th ed.,
Pearson Prentice Hall
,
Englewood Cliffs, NJ
, pp.
42
45
,
54
59
.
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainty in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
3
), pp.
3
7
. 10.1016/0894-1777(88)90043-X
27.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helical Ribbed Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
. 10.1016/0017-9310(80)90177-5
You do not currently have access to this content.