Abstract

Data center power consumption has grown substantially in the past 20 years. According to the United States Data Center Energy Usage Report, the data center consumption in 2014 was estimated at 70 billion kWh, which accounted for 1.8% of the total U.S. electricity. The present effort investigates the effects of various data center parameters on a new set of metrics called the performance indicator to help assess and optimize the cooling performance of data centers. The three metrics in the performance indicator include power usage effectiveness ratio (PUEr), thermal conformance, and thermal resilience. The data center parameters investigated include computer room air handler (CRAH) setpoints, room configuration layouts, and containment strategies. The results show that the CRAH setpoint significantly influences the PUEr with higher setpoint values resulting in lower PUEr values. Room configuration layout changes and containment strategies showed substantial effects on thermal conformance and thermal resilience. The thermal conformance was increased approximately 10% with room configuration changes without changing the PUEr. Full hot aisle containment also improved the thermal conformance by 7.4%.

References

References
1.
Shehabi
,
A.
,
Smith
,
S.
,
Sartor
,
D.
,
Brown
,
R.
,
Herrlin
,
M.
,
Koomay
,
J.
,
Masanet
,
E.
,
Horner
,
N.
,
Azevedo
,
I.
, and
Lintner
,
W.
,
2016
,
United States Data Center Energy Usage Report
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
.
2.
Masanet
,
E. R.
,
Brown
,
R. E.
,
Shehabi
,
A.
,
Koomey
,
J. G.
, and
Nordman
,
B.
,
2011
, “
Estimating the Energy Use and Efficiency Potential of U.S. Data Centers
,”
Proc. IEEE
,
99
(
8
), pp.
1440
1453
. 10.1109/JPROC.2011.2155610
3.
Gough
,
C.
,
Steiner
,
I.
, and
Saunders
,
W.
,
2015
,
Energy Efficient Servers: Blueprints for Data Center Optimization
,
Apress
,
Berkley, CA
.
4.
Reddy
,
D.
,
Setz
,
B.
,
Rao
,
S.
,
Gangadharan
,
G. R.
, and
Aiello
,
M.
,
2017
, “
Metrics for Sustainable Data Centers
,”
IEEE Trans. Sustain. Comput.
,
2
(
3
), pp.
290
303
. 10.1109/TSUSC.2017.2701883
5.
Seymour
,
M.
,
Bana
,
M.
,
Wang
,
D.
, and
Cummins
,
D.
(
2016
). “
WP#68—The Performance Indicator Assessing and Visualizing Data Center Cooling Performance
,”
The Green Grid
, https://www.thegreengrid.org/en/resources/library-and-tools/370-The-Performance-Indicator-Assessing-and-Visualizing-Data-Center-Cooling-Performance, Accessed 21 January, 2019.
6.
Seymour
,
M.
,
2018
, “
Modeling and Metrics for Data Center Performance
,”
ASHRAE 2018 Winter Conference
,
Chicago, IL
,
Jan. 20–24
.
7.
ASHRAE TC9.9
,
2015
,
Thermal Guidelines for Data Processing Environments
, 4th ed.,
ASHRAE
,
Atlanta, GA
.
8.
Nemati
,
K.
,
Zabalegui
,
A.
,
Bana
,
M.
, and
Seymour
,
M.
,
2018
, “
Quantifying Data Center Performance
,”
34th Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
, pp.
141
147
.
9.
Joshi
,
Y.
, and
Kumar
,
P.
,
2012
,
Energy Efficient Thermal Management of Data Centers
,
Springer
,
New York
.
10.
Alkharabsheh
,
S.
,
Fernandes
,
J.
,
Gebrehiwot
,
B.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Ortega
,
A.
,
Joshi
,
Y.
, and
Sammakia
,
B.
,
2015
, “
A Brief Overview of Recent Developments in Thermal Management in Data Centers
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040801
. 10.1115/1.4031326
11.
King
,
D.
,
2010
, “
The Benefits of Supply Air Temperature Control in the Datacenter
,”
Future Facilities
, https://www.futurefacilities.com/resources/whitepapers/the-benefits-of-supply-air-temperature-control-in-the-datacenter/download/, Accessed 2 February, 2019.
12.
Nada
,
S. A.
,
Said
,
M. A.
, and
Rady
,
M. A.
,
2016
, “
CFD Investigations of Data Centers’ Thermal Performance for Different Configurations of CRACs Units and Aisles Seperation
,”
Alexandria Eng. J.
,
55
(
2
), pp.
959
971
. 10.1016/j.aej.2016.02.025
13.
Nada
,
S. A.
, and
Elfeky
,
K. E.
,
2016
, “
Experimental Investigations of Thermal Managements Solutions in Data Centers Buildings for Different Arrangements of Cold Aisles Containments
,”
J. Build. Eng.
,
5
, pp.
41
49
. 10.1016/j.jobe.2015.11.001
14.
Semin
,
V.
,
Bardsley
,
M.
,
Rosten
,
O.
, and
Aldham
,
C.
,
2015
, “
Application of a Multilevel Unstructured Staggered Solver to Thermal Electronic Simulations
,”
Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
, pp.
287
292
.
15.
Ham
,
S. W.
,
Park
,
J.
, and
Jeong
,
J. W.
,
2015
, “
Optimum Supply air Temperature Ranges of Various air-Side Economizers in a Modular Data Center
,”
Appl. Therm. Eng.
,
77
, pp.
163
179
. 10.1016/j.applthermaleng.2014.12.021
16.
Moore
,
J.
,
Chase
,
J. S.
,
Ranganathan
,
P.
, and
Sharma
,
R. K.
,
2005
, “
Making Scheduling ‘Cool’: Temperature-Aware Workload Placement in Data Centers
,”
USENIX Annual Technical Conference, General Track
, pp.
61
75
.
17.
Wang
,
L.
, and
Khan
,
S.
,
2013
, “
Review of Performance Metrics for Green Data Centers: a Taxonomy Study
,”
J. Supercomput.
,
63
(
3
), pp.
639
656
. 10.1007/s11227-011-0704-3
You do not currently have access to this content.