Abstract

Double-diffusive mixed convection in a backward-facing step (BFS) channel for different shapes of nanoparticles is analyzed using velocity–vorticity equations. The effect of four shapes of alumina nanoparticles at volume fractions χ of 1–5% on heat and mass transfer are studied for buoyancy ratios, N from −3 to 3 at Re = 200, Ri = 0.1, and Pr = 6.2. As χ increases, the Nuav decreases for all shapes at N = −3; however, it increases with an increase in N from 1 to 3. At N = 3, the Nu increases by 29% for blades shape, whereas a 28% decrease was noticed for platelets shape. An increase in χ of nanoparticles results in a decrease of Shav for N = 1–3, with a maximum decrease of 57% being observed at N = −3 for cylinders shape. The τav at the bottom wall continues to increase up to a maximum of 400% for platelets shape for N = 3.

References

References
1.
Choi
,
U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition
,
San Francisco, CA
,
ASME Paper No. 84938
.
2.
Sidik
,
N. A. C.
,
Jamil
,
M. M.
,
Japar
,
W. M. A. A.
, and
Adamu
,
I. M.
,
2017
, “
“A Review on Preparation Methods, Stability and Applications of Hybridnanofluids
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
1112
1122
. 10.1016/j.rser.2017.05.221
3.
Khanafer
,
K.
, and
Vafai
,
K.
,
2018
, “
A Review on the Applications of Nanofluids in Solar Energy Field
,”
Renewable Energy
,
123
, pp.
398
406
.10.1016/j.renene.2018.01.097
4.
Meyer
,
J. P.
,
Adio
,
S. A.
,
Sharifpur
,
M.
, and
Nwosu
,
P. N.
,
2016
, “
The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models
,”
Heat Transf. Eng.
,
37
(
5
), pp.
387
421
. 10.1080/01457632.2015.1057447
5.
Kumar
,
P. M.
,
Kumar
,
J.
,
Tamilarasan
,
R.
,
Sendhilnathan
,
S.
, and
Suresh
,
S.
,
2015
, “
Review on Nanofluids Theoretical Thermal Conductivity Models
,”
Eng. J.
,
19
(
1
), pp.
67
83
. 10.4186/ej.2015.19.1.67
6.
Gupta
,
M.
,
Singh
,
V.
,
Kumar
,
R.
, and
Said
,
Z.
,
2017
, “
A Review on Thermophysical Properties of Nanofluids and Heat Transfer Applications
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
638
670
. 10.1016/j.rser.2017.02.073
7.
Angayarkanni
,
S. A.
, and
Philip
,
J.
,
2015
, “
Review on Thermal Properties of Nanofluids: Recent Developments
,”
Adv. Colloid Interface Sci.
,
225
, pp.
146
176
.10.1016/j.cis.2015.08.014
8.
Wang
,
X. Q.
, and
Majumder
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Brazilian J. Chem. Eng.
,
25
(
4
), pp.
613
630
. 10.1590/S0104-66322008000400001
9.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement with Nanofluids
,”
Int. J. Heat Mass Transf.
,
52
(
13–14
), pp.
3187
3196
. 10.1016/j.ijheatmasstransfer.2009.02.006
10.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Nanofluid Convective Heat Transfer Using Semi Analytical and Numerical Approaches: A Review
,”
J. Taiwan Inst. Chem. Eng.
,
65
, pp.
43
77
. 10.1016/j.jtice.2016.05.014
11.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transf.
,
52
(
9–10
), pp.
2189
2195
. 10.1016/j.ijheatmasstransfer.2007.11.063
12.
Timofeeva
,
E. V.
,
Smith
,
D. S.
,
Yu
,
W.
,
France
,
D. M.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2010
, “
Particle Size and Interfacial Effects on Thermo-Physical and Heat Transfer Characteristics of Water-Based α-SiC Nanofluids
,”
Nanotechnology
,
21
(
21
), pp.
1
10
. 10.1088/0957-4484/21/21/215703
13.
Prasher
,
R.
,
2005
, “
Brownian-Motion-Based Convective-Conductive Model for the Thermal Conductivity of Nanofluids
,”
ASME Summer Heat Transfer Conference
,
CA
, pp.
1
11
.
14.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
ole of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
. 10.1063/1.1756684
15.
Sui
,
J.
,
Zheng
,
L.
,
Zhang
,
X.
,
Chen
,
Y.
, and
Cheng
,
Z.
,
2016
, “
A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids
,”
Sci. Rep.
,
6
(
19560
), pp.
1
8
. 10.1038/srep19560
16.
Krishna
,
K. H.
,
Neti
,
S.
,
Oztekin
,
A.
, and
Mohapatra
,
S.
,
2015
, “
Modeling of Particle Agglomeration in Nanofluids Modeling of Particle Agglomeration in Nanofluids
,”
J. Appl. Phys.
,
117
(
094304
), pp.
1
8
. 10.1063/1.4913874
17.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
,
2006
, “
Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity
,”
Appl. Phys. Lett.
,
88
(
093116
), pp.
3
5
. 10.1063/1.2179118
18.
Beck
,
M. P.
,
Sun
,
T.
, and
Teja
,
A. S.
,
2007
, “
The Thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol
,”
Fluid Phase Equilib.
,
260
(
2
), pp.
275
278
. 10.1016/j.fluid.2007.07.034
19.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transf.
,
46
(
19
), pp.
3639
3653
. 10.1016/S0017-9310(03)00156-X
20.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
,
26
(
6
), pp.
855
864
. 10.1016/j.ijheatfluidflow.2005.10.005
21.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
. 10.1007/s00231-002-0382-z
22.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2010
, “
Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)
,”
Adv. Mech. Eng.
,
2010
, pp.
1
10
. 10.1155/2010/742739
23.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
. 10.1021/i160003a005
24.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
367
373
. 10.1016/j.ijthermalsci.2004.12.005
25.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), pp.
1
10
.10.1063/1.3155999
26.
Khodashenas
,
B.
, and
Ghorbani
,
H. R.
,
2019
, “
Synthesis of Silver Nanoparticles with Different Shapes
,”
Arabian J. Chem.
,
12
, pp.
1823
1838
. 10.1016/j.arabjc.2014.12.014
27.
Ooi
,
E. H.
, and
Popov
,
V.
,
2013
, “
Numerical Study of Influence of Nanoparticle Shape on the Natural Convection in Cu-Water Nano Fluid
,”
Int. J. Therm. Sci.
,
65
, pp.
178
188
. 10.1016/j.ijthermalsci.2012.10.020
28.
Trodi
,
A.
, and
Benhamza
,
M. E. H.
,
2017
, “
Particle Shape and Aspect Ratio Effect of Al2O3–Water Nanofluid on Natural Convective Heat Transfer Enhancement in Differentially Heated Square Enclosures
,”
Chem. Eng. Commun.
,
204
(
2
), pp.
158
167
. 10.1080/00986445.2016.1246437
29.
Elias
,
M. M.
,
Shahrul
,
I. M.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2014
, “
Effect of Different Nanoparticle Shapes on Shell and Tube Heat Exchanger Using Different Baffle Angles and Operated with Nanofluid
,”
Int. J. Heat Mass Transfer
,
70
, pp.
289
297
. 10.1016/j.ijheatmasstransfer.2013.11.018
30.
Ferrouillat
,
S.
,
Bontemps
,
A.
,
Poncelet
,
O.
,
Soriano
,
O.
, and
Gruss
,
J.
,
2013
, “
Influence of Nanoparticle Shape Factor on Convective Heat Transfer and Energetic Performance of Water-Based SiO2 and ZnO Nano Fluids
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
839
851
. 10.1016/j.applthermaleng.2012.10.020
31.
Vanaki
,
S. M.
,
Mohammed
,
H. A.
,
Abdollahi
,
A.
, and
Wahid
,
M. A.
,
2014
, “
Effect of Nanoparticle Shapes on the Heat Transfer Enhancement in a Wavy Channel with Different Phase Shifts
,”
J. Mol. Liq
,
196
, pp.
32
42
. 10.1016/j.molliq.2014.03.001
32.
Akbar
,
N. S.
,
Butt
,
A. W.
, and
Tripathi
,
D.
,
2017
, “
Nanoparticle Shapes Effects on Unsteady Physiological Transport of Nanofluids Through a Finite Length Non-Uniform Channel
,”
Results Phys.
,
7
, pp.
2477
2484
. 10.1016/j.rinp.2017.07.019
33.
Zeeshan
,
A.
,
Hassan
,
M.
,
Ellahi
,
R.
, and
Nawaz
,
M.
,
2017
, “
“Shape Effect of Nanosize Particles in Unsteady Mixed Convection Flow of Nanofluid Over Disk With Entropy Generation
,”
Proc IMechE Part E: J Process Mech. Eng.
,
231
(
4
), pp.
871
879
. 10.1177/0954408916646139
34.
Chamkha
,
A. J.
, and
Selimefendigil
,
F.
,
2018
, “
Forced Convection of Pulsating Nanofluid Flow Over a Backward Facing Step with Various Particle Shapes
,”
Energies
,
11
(
3068
), pp.
1
19
. 10.3390/en11113068
35.
Sparrow
,
E. M.
, and
Chuck
,
W.
,
1987
, “
PC Solutions for Heat Transfer and Fluid Flow Downstream of an Abrupt, Asymmetric Enlargement in a Channel
,”
Numer. Heat Transf.
,
12
(
1
), pp.
19
40
. 10.1080/10407788708913572
36.
Abu-Nada
,
E.
,
2008
, “
Application of Nanofluids for Heat Transfer Enhancement of Separated Flows Encountered in a Backward Facing Step
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
242
249
. 10.1016/j.ijheatfluidflow.2007.07.001
37.
Mohammed
,
H. A.
,
Al-Aswadi
,
A. A.
,
Abu-Mulaweh
,
H. I.
,
Hussein
,
A. K.
, and
Kanna
,
P. R.
,
2014
, “
Mixed Convection Over a Backward-Facing Step in a Vertical Duct Using Nanofluids-Buoyancy Opposing Case
,”
J. Comput. Theor. Nanosci.
,
11
(
3
), pp.
860
872
. 10.1166/jctn.2014.3339
38.
Mohammed
,
H. A.
,
Al-Aswadi
,
A. A.
,
Yusoff
,
M. Z.
, and
Saidur
,
R.
,
2012
, “
Buoyancy-assisted Mixed Convective Flow Over Backward-Facing Step in a Vertical Duct Using Nanofluids
,”
Thermophys. Aeromechanics
,
19
(
1
), pp.
33
52
. 10.1134/S0869864312010040
39.
Mohammed
,
H. A.
,
Al-Aswadi
,
A. A.
,
Abu-Mulaweh
,
H. I.
, and
Shuaib
,
N. H.
,
2011
, “
Influence of Nanofluids on Mixed Convective Heat Transfer Over a Horizontal Backward-Facing Step
,”
Heat Transf.—Asian Res.
,
40
(
4
), pp.
287
307
. 10.1002/htj.20344
40.
Kumar
,
D. S.
,
Murugesan
,
K.
, and
Thomas
,
H. R.
,
2008
, “
Numerical Simulation of Double Diffusive Mixed Convection in a Lid-Driven Square Cavity Using Velocity-Vorticity Formulation
,”
Numerical Heat Transfer, Part A
,
54
(
9
), pp.
837
865
. 10.1080/10407780802424213
41.
Reddy
,
N.
, and
Murugesan
,
K.
,
2017
, “
Numerical Study of Double Diffusive Convection in a lid Driven Cavity With Linearly Salted Side Walls
,”
J. Appl. Fluid Mech.
,
10
(
1
), pp.
69
79
. 10.18869/acadpub.jafm.73.238.26231
42.
Kumar
,
D. S.
,
Murugesan
,
K.
, and
Gupta
,
A.
,
2009
, “
Thermo-solutal Buoyancy Induced Mixed Convection in a Backward Facing Step Channel Using Velocity-Vorticity Formulation
,”
Numerical Heat Transfer, Part A
,
56
(
7
), pp.
604
630
. 10.1080/10407780903265978
43.
Gebhart
,
B.
, and
Pera
,
L.
,
1971
, “
The Nature of Vertical Natural Convection Flows Resulting From the Combined Buoyancy Effects of Thermal and Mass Diffusion
,”
Int. J. Heat Mass Transfer
,
14
(
12
), pp.
2025
2050
. 10.1016/0017-9310(71)90026-3
44.
Pang
,
C.
,
Lee
,
J. W.
, and
Kang
,
Y. T.
,
2015
, “
Review on Combined Heat and Mass Transfer Characteristics Innanofluids
,”
Int. J. Therm. Sci.
,
87
, pp.
49
67
. 10.1016/j.ijthermalsci.2014.07.017
45.
Bait
,
O.
, and
Si-Ameur
,
M.
,
2018
, “
Enhanced Heat and Mass Transfer in Solar Stills Using Nanofluids: A Review
,”
Sol. Energy
,
170
, pp.
694
722
. 10.1016/j.solener.2018.06.020
46.
Pal
,
D.
, and
Mandal
,
G.
,
2014
, “
Influence of Thermal Radiation on Mixed Convection Heat and Masstransfer Stagnation-Point Flow in Nanofluids Over Stretching/Shrinkingsheet in a Porous Medium with Chemical Reaction
,”
Nucl. Eng. Des.
,
273
, pp.
644
652
. 10.1016/j.nucengdes.2014.01.032
47.
Pal
,
D.
,
Mandal
,
G.
, and
Vajravalu
,
K.
,
2016
, “
Soret and Dufour Effects on MHD Convective–Radiative Heat and Mass Transfer of Nanofluids Over a Vertical non-Linear stretching/Shrinkingsheet
,”
Appl. Math. Comput
,
287–288
, pp.
184
200
. 10.1016/j.amc.2016.04.037
48.
Shah
,
Z.
,
Islam
,
S.
,
Ayaz
,
H.
, and
Khan
,
S.
,
2019
, “
Radiative Heat and Mass Transfer Analysis of Micropolar Nanofluid Flow of Casson Fluid Between Two Rotating Parallel Plates with Effects of Hall Current
,”
ASME J. Heat Transfer
,
141
(
2
), p.
022401
. 10.1115/1.4040415
49.
Mahanthesh
,
B.
,
Gireesha
,
B. J.
, and
Gorla
,
R. S. R.
,
2016
, “
Heat and Mass Transfer Effects on the Mixedconvective Flow of Chemically Reacting Nanofluidpast a Moving/Stationary Vertical Plate
,”
Alexandria Eng. J.
,
55
(
1
), pp.
569
581
. 10.1016/j.aej.2016.01.022
50.
Kim
,
J.
,
Choi
,
C. K.
,
Kang
,
Y. T.
, and
Kim
,
M. G.
,
2006
, “
Effects of Thermodiffusion and Nanoparticles on Convective Instabilities in Binary Nanofluids
,”
Nanoscale Microscale Thermophys. Eng.
,
10
(
1
), pp.
29
39
. 10.1080/10893950500357772
51.
Singh
,
P.
, and
Kumar
,
M.
,
2015
, “
Mass Transfer in MHD Flow of Alumina Water Nanofluid Over a Flat Plate Under Slip Conditions
,”
Alexandria Eng. J.
,
54
(
3
), pp.
383
387
. 10.1016/j.aej.2015.04.005
52.
Murugesan
,
K.
,
Lo
,
D. C.
,
Young
,
D. L.
,
Fan
,
C. M.
, and
Chen
,
C. W.
,
2006
, “
Global Matrix-Free Finite-Element Scheme for Natural Convection in a Square Cavity With Step Blockage
,”
Numer. Heat Transf. Part B Fundam
,
50
(
4
), pp.
353
373
. 10.1080/10407790600604742
53.
Nath
,
R.
, and
Krishnan
,
M.
,
2019
, “
Numerical Study of Double Diffusive Mixed Convection in a Backward Facing Step Channel Filled With Cu-Water Nanofluid
,”
Int. J Mech. Sci
,
153–154
, pp.
48
63
. 10.1016/j.ijmecsci.2019.01.035
You do not currently have access to this content.