Abstract

Based on the Merkel method, a mathematical model for calculating the evaporation loss of natural draft counterflow wet cooling towers (NDWCTs) was established. Taking the NDWCTs of the representative 300 MW and 600 MW power plants as the experimental objects, the calculated values obtained by the mathematical method were in good agreement with field experiment. Then, the effect of thermal load on evaporation loss of NDWCT was analyzed. The results showed that with the thermal load of NDWCT increasing, the evaporation loss increased, while the rate of evaporation loss caused by per unit change in temperature decreased. When the thermal load is the same, the evaporation loss was basically equal no matter by changing the mass flowrate or the inlet water temperature.

References

References
1.
Feeley,
T. J.
, III
,
Skone
,
T. J.
,
Stiegel
,
G. J.
, Jr.
,
McNemar
,
A.
,
Nemeth
,
M.
,
Schimmoller
,
B.
, and
Manfredo
,
L.
,
2008
, “
Water: A Critical Resource in the Thermoelectric Power Industry
,”
Energy
,
33
(
1
), pp.
1
11
. 10.1016/j.energy.2007.08.007
2.
Rahmati
,
M.
,
Alavi
,
S. R.
, and
Sedaghat
,
A.
,
2016
, “
Thermal Performance of Natural Draft Wet Cooling Towers Under Cross-Wind Conditions Based on Experimental Data and Regression Analysis
,”
2016 6th Conference on Thermal Power Plants (CTPP)
,
Tehran, Iran
,
Jan. 19–20
, pp.
1
5
.
3.
Owen
,
M. T. F.
, and
Kröger
,
D. G.
,
2011
, “
An Investigation of Air-Cooled Steam Condenser Performance Under Windy Conditions Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
064502
.
4.
Yang
,
L. J.
,
Du
,
X. Z.
, and
Yang
,
Y. P.
,
2011
, “
Influences of Wind-Break Wall Configurations Upon Flow and Heat Transfer Characteristics of Air-Cooled Condensers in a Power Plant
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
2050
2061
. 10.1016/j.ijthermalsci.2011.05.004
5.
Zhang
,
L.
,
Zhang
,
L.
,
Zhang
,
Q.
,
Jiang
,
K.
,
Tie
,
Y.
, and
Wang
,
S.
,
2018
, “
Effects of the Second-Stage of Rotor With Single Abnormal Blade Angle on Rotating Stall of a Two-Stage Variable Pitch Axial Fan
,”
Energies
,
11
(
12
), p.
3293
. 10.3390/en11123293
6.
Zhang
,
L.
,
He
,
R.
,
Wang
,
X.
,
Zhang
,
Q.
, and
Wang
,
S.
,
2019
, “
Study on Static and Dynamic Characteristics of an Axial Fan With Abnormal Blade Under Rotating Stall Conditions
,”
Energy
,
170
, pp.
305
325
. 10.1016/j.energy.2018.12.125
7.
Zhang
,
L.
, and
Engeda
,
A.
,
2018
, “
Numerical Simulation of Rotating Stall in a Two-Stage Axial Fan
,”
Therm. Sci.
,
22
(
Suppl. 2
), pp.
655
663
. 10.2298/TSCI171025050Z
8.
Platts
,
2005
,
North American Energy Business Directory, World Electric Power Plants Database
,
The McGraw-Hill Companies, Inc.
,
New York
.
9.
Lee
,
U.
,
Han
,
J.
,
Elgowainy
,
A.
, and
Wang
,
M.
,
2018
, “
Regional Water Consumption for Hydro and Thermal Electricity Generation in the United States
,”
Appl. Energy
,
210
, pp.
661
672
. 10.1016/j.apenergy.2017.05.025
10.
Xia
,
L.
,
Li
,
J.
,
Ma
,
W.
,
Gurgenci
,
H.
,
Guan
,
Z.
, and
Wang
,
P.
,
2017
, “
Water Consumption Comparison Between a Natural Draft Wet Cooling Tower and a Natural Draft Hybrid Cooling Tower—An Annual Simulation for Luoyang Conditions
,”
Heat Transfer Eng.
,
38
(
11–12
), pp.
1034
1043
. 10.1080/01457632.2016.1216975
11.
Naik
,
B. K.
, and
Muthukumar
,
P.
,
2017
, “
A Novel Approach for Performance Assessment of Mechanical Draft Wet Cooling Towers
,”
Appl. Therm. Eng.
,
121
, pp.
14
26
. 10.1016/j.applthermaleng.2017.04.042
12.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2006
, “
Prediction of Evaporation Losses in Wet Cooling Towers
,”
Heat Transfer Eng.
,
27
(
9
), pp.
86
92
. 10.1080/01457630600846372
13.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2007
, “
Prediction of Evaporation Losses in Evaporative Fluid Coolers
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
520
527
. 10.1016/j.applthermaleng.2006.06.008
14.
Alan
,
B.
,
Maulbetsch
,
J.S.
, and
DiFilippo
,
M.N.
,
2005
, “
Water Conservation Options for Wet-Cooled Power Plants
,”
CEC/EPRI Advanced Cooling Strategies/Technologies Conference
,
Sacramento, CA
,
June 1–2
.
15.
Hajidavalloo
,
E.
,
Shakeri
,
R.
, and
Mehrabian
,
M. A.
,
2010
, “
Thermal Performance of Cross Flow Cooling Towers in Variable Wet Bulb Temperature
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1298
1303
. 10.1016/j.enconman.2010.01.005
16.
Reuter
,
H. C. R.
, and
Kröger
,
D. G.
,
2012
, “
Computational Models for Predicting Cooling Tower Fill Performance in Cross-Counterflow Configuration
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
2
), p.
021003
.
17.
Stabat
,
P.
, and
Marchio
,
D.
,
2004
, “
Simplified Model for Indirect-Contact Evaporative Cooling-Tower Behaviour
,”
Appl. Energy
,
78
(
4
), pp.
433
451
. 10.1016/j.apenergy.2003.09.004
18.
Rubio-Castro
,
E.
,
Serna-González
,
M.
,
Ponce-Ortega
,
J. M.
, and
Morales-Cabrera
,
M. A.
,
2011
, “
Optimization of Mechanical Draft Counter Flow Wet-Cooling Towers Using a Rigorous Model
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3615
3628
. 10.1016/j.applthermaleng.2011.07.029
19.
Kairouani
,
L.
,
Hassairi
,
M.
, and
Tarek
,
Z.
,
2004
, “
Performance of Cooling Tower in South of Tunisia
,”
Build Environ.
,
39
(
3
), pp.
351
355
. 10.1016/j.buildenv.2003.08.017
20.
Papaefthimiou
,
V. D.
,
Rogdakis
,
E. D.
,
Koronaki
,
I. P.
, and
Zannis
,
T. C.
,
2012
, “
Thermodynamic Study of the Effects of Ambient Air Conditions on the Thermal Performance Characteristics of a Closed Wet Cooling Tower
,”
Appl. Therm. Eng.
,
33
, pp.
199
207
. 10.1016/j.applthermaleng.2011.09.035
21.
Merkel
,
F.
,
1925
,
Verdunstungskühlung
,
VDI Verlag GmbH
,
Berlin, Germany
.
22.
Lewis
,
W. K.
,
1962
, “
The Evaporation of a Liquid Into a Gas
,”
Int. J. Heat Mass Tran
,
5
(
1–2
), pp.
109
112
. 10.1016/0017-9310(62)90118-7
23.
Gao
,
M.
,
Zhang
,
L.
,
Wang
,
N. N.
,
Shi
,
Y. T.
, and
Sun
,
F. Z.
,
2016
, “
Influence of Non-Uniform Layout Fillings on Thermal Performance for Wet Cooling Tower
,”
Appl. Therm. Eng.
,
93
, pp.
549
555
. 10.1016/j.applthermaleng.2015.09.054
24.
Gao
,
M.
,
Zou
,
J.
,
He
,
S.
, and
Sun
,
F.
,
2018
, “
Thermal Performance Analysis for High Level Water Collecting Wet Cooling Tower Under Crosswind Conditions
,”
Appl. Therm. Eng.
,
136
, pp.
568
575
. 10.1016/j.applthermaleng.2018.03.043
25.
Zhao
,
Z.
,
2001
,
Cooling Tower
,
Chinese Water Conservancy and Electric Power Publisher
,
Beijing
.
26.
Liu
,
J.
,
Jiang
,
Y.
,
Chong
,
D.
, and
Yan
,
J.
,
2012
, “
An Initial Analysis on the Energy-Efficient Performance of a Natural DRAFT Wet Cooling Tower With CaCl2 Solution for Power Plants
,”
Appl. Therm. Eng.
,
48
, pp.
249
255
. 10.1016/j.applthermaleng.2012.01.066
27.
Li
,
J. H.
,
2003
,
Error Theory and Evaluation of Measurement Uncertainty
,
China Metrology Press
,
Beijing
.
You do not currently have access to this content.