Abstract

The present work concentrates on the two-dimensional steady incompressible flow of an Oldroyd-8 constant fluid between vertical plates influenced by a magnetic field. The cross diffusive and second-order chemical reactions are incorporated into the study. The homotopy analysis method (HAM) is used to obtain the series solutions of the transformed system of nonlinear equations. The effects of these parameters on the dimensionless velocity, temperature, concentration, skin friction, and Nusselt and Sherwood numbers are also investigated for various values of relevant parameters affecting the flow and heat transfer phenomena. The most relevant outcomes of the present study are that enhancement in magnetic field strength undermines the flow velocity, temperature, and concentration establishing thinner related boundary layer. Another important outcome is that an increase in the Dufour parameter upsurges the rate of heat transfer at the wall y = 0 while peters out at y = 1. Finally, the second-order chemical reaction parameter reduces the concentration distribution. The novel outcomes of this investigation will be helpful in the field of the aerosol technology.

References

References
1.
Sandeep
,
N.
, and
Sulochana
,
C.
,
2016
, “
Momentum and Heat Transfer Behavior of Jeffrey, Maxwell and Oldroyd-B Nanofluids Past a Stretching Surface With Non-Uniform Heat Source/Sink
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
517
524
. 10.1016/j.asej.2016.02.008
2.
Reddy
,
M. G.
,
Sandeep
,
N.
,
Saleem
,
S.
, and
Mustafa
,
M. T.
,
2018
, “
Magnetohydrodynamic Bio-Convection Flow of Oldroyd-B Nanofluid Past a Melting Sheet With Cross Diffusion
,”
J. Comput. Theor. Nanosci.
,
15
(
4
), pp.
1348
1359
. 10.1166/jctn.2018.7212
3.
Siddiqui
,
A. M.
,
Sohail
,
A.
,
Ashraf
,
A.
, and
Azim
,
Q. A.
,
2016
, “
Drag Flow Analysis of Oldroyd Eight Constant Fluid
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2909
2918
. 10.1016/j.aej.2016.06.001
4.
Bhukta
,
D.
,
Mishra
,
S. R.
, and
Mainul Hoque
,
M.
,
2016
, “
Numerical Simulation of Heat Transfer Effect on Oldroyd 8-Constant Fluid With Wire Coating Analysis
,”
Eng. Sci. Technol.
,
19
(
4
), pp.
1910
1918
. 10.1016/j.jestch.2016.08.001
5.
Mahapatra
,
T. R.
,
Pal
,
D.
, and
Mondal
,
S.
,
2013
, “
Effects of Buoyancy Ratio on Double-Diffusive Natural Convection in a Lid-Driven Cavity
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
771
785
. 10.1016/j.ijheatmasstransfer.2012.10.028
6.
Imtiaz
,
M.
,
Mabood
,
F.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2019
, “
Homogeneous-Heterogeneous Reactions in MHD Radiative Flow of Second Grade Fluid Due to a Curved Stretching Surface
,”
Int. J. Heat Mass Transfer
,
145
, p.
118781
. 10.1016/j.ijheatmasstransfer.2019.118781
7.
Zhu
,
J.
,
Zheng
,
L.
,
Zheng
,
L.
, and
Zhang
,
X.
,
2015
, “
Second-Order Slip MHD Flow and Heat Transfer of Nanofluids With Thermal Radiation and Chemical Reaction
,”
Appl. Math. Mech.-Engl. Ed.
,
36
(
9
), pp.
1131
1146
. 10.1007/s10483-015-1977-6
8.
Kaladhar
,
K.
, and
Komuraiah
,
E.
,
2017
, “
Homotopy Analysis for the Influence of Navier Slip Flow in a Vertical Channel With Cross Diffusion Effects
,”
Math. Sci.
,
11
(
3
), pp.
219
229
. 10.1007/s40096-017-0225-1
9.
Khan
,
D.
,
Khan
,
A.
,
Khan
,
I.
,
Ali
,
F.
,
Ul Karim
,
F.
, and
Tlili
,
I.
,
2019
, “
Effects of Relative Magnetic Field, Chemical Reaction, Heat Generation and Newtonian Heating on Convection Flow of Casson Fluid Over a Moving Vertical Plate Embedded in a Porous Medium
,”
Sci. Rep.
,
9
(
1
), p.
400
. 10.1038/s41598-018-36243-0
10.
Haroun
,
N. A.
,
Sibanda
,
P.
,
Mondal
,
S.
, and
Motsa
,
S. S.
,
2015
, “
On Unsteady MHD Mixed Convection in a Nanofluid Due to a Stretching/Shrinking Surface With Suction/Injection Using the Spectral Relaxation Method
,”
Bound. Value Probl.
,
24
, pp.
1
17
. 10.1186/s13661-015-0289-5
11.
Mabood
,
F.
,
Khan
,
W. A.
, and
Ismai
,
A. I. Md.
,
2015
, “
MHD Stagnation Point Flow and Heat Transfer Impinging on Stretching Sheet With Chemical Reaction and Transpiration
,”
Chem. Eng. J.
,
273
, pp.
430
437
. 10.1016/j.cej.2015.03.037
12.
Ahmad
,
S.
,
Farooq
,
M.
,
Mir
,
N. A.
,
Anjum
,
A.
, and
Javed
,
M.
,
2019
, “
Magneto-Hydrodynamic Flow of Squeezed Fluid With Binary Chemical Reaction and Activation Energy
,”
J. Cent. South Univ.
,
26
(
5
), pp.
1362
1373
. 10.1007/s11771-019-4092-9
13.
Mabood
,
F.
,
Nayak
,
M. K.
, and
Chamkha
,
A. J.
,
2019
, “
Heat Transfer on the Cross Flow of Micropolar Fluids Over a Thin Needle Moving in a Parallel Stream Influenced by Binary Chemical Reaction and Arrhenius Activation Energy
,”
Eur. Phys. J. Plus
,
134
(
9
), p.
427
. 10.1140/epjp/i2019-12716-9
14.
Mondal
,
S.
, and
Sibanda
,
P.
,
2016
, “
Computational Study on Convective Flows in Presence of Chemical Reaction and Thermal Radiation in Porous/Non-Porous Cavities
,”
Global J. Pure Appl. Math.
,
12
(
4
), pp.
3641
3671
.
15.
Rahman
,
M. M.
, and
Al-Lawatia
,
M.
,
2010
, “
Effects of Higher Order Chemical Reaction on Micropolar Fluid Flow on a Power Law Permeable Stretched Sheet With Variable Concentration in a Porous Medium
,”
Can. J. Chem. Eng.
,
88
(
1
), pp.
23
32
. 10.1002/cjce.20244
16.
Takhar
,
H. S.
,
Chamkha
,
A. J.
, and
Nath
,
G.
,
2000
, “
Flow and Mass Transfer on a Stretching Sheet With a Magnetic Field and Chemically Reactive Species
,”
Int. J. Eng. Sci.
,
38
(
12
), pp.
1303
1314
. 10.1016/S0020-7225(99)00079-8
17.
Rajani
,
D.
,
Hemalatha
,
H.
, and
Madhavi
,
M. V. D. N. S.
,
2017
, “
Effects of Higher Order Chemical Reactions and Slip Boundary Conditions on Nanofluid Flow
,”
Int. J. Eng. Res. Appl.
,
7
(
5
), pp.
36
45
. 10.9790/9622-0705053645
18.
Adesanya
,
S. O.
,
2013
, “
Thermal Stability Analysis of Reactive Hydromagnetic Third Grade Fluid Through a Channel With Convective Cooling
,”
J. Nigerian Math. Soc.
,
32
, pp.
61
72
.
19.
Hayat
,
T.
,
Qayyum
,
S.
,
Farooq
,
M.
,
Alsaedi
,
A.
, and
Ayub
,
M.
,
2017
, “
Mixed Convection Flow of Jeffrey Fluid Along an Inclined Stretching Cylinder With Double Stratification Effect
,”
Therm. Sci.
,
21
(
2
), pp.
849
862
. 10.2298/TSCI141106052H
20.
Qayyum
,
S.
,
Hayat
,
T.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2017
, “
Nonlinear Convective Flow of Powell-Erying Magneto Nanofluid With Newtonian Heating
,”
Results Phys.
,
7
, pp.
2933
2940
. 10.1016/j.rinp.2017.08.001
21.
Hayat
,
T.
,
Qayyum
,
S.
, and
Alsaedi
,
A.
,
2017
, “
Mechanisms of Nonlinear Convective Flow of Jeffrey Nanofluid Due to Nonlinear Radially Stretching Sheet With Convective Conditions and Magnetic Field
,”
Results Phys.
,
7
, pp.
2341
2351
. 10.1016/j.rinp.2017.06.052
22.
Makinde
,
O. D.
, and
Eegunjobi
,
A. S.
,
2017
, “
The MHD Couple Stress Nano Fluid Flow in a Permeable Wall Channel With Entropy Generation and Nonlinear Radiative Heat
,”
J. Therm. Sci. Technol.
,
12
(
2
), p.
JTST0033
. 10.1299/jtst.2017jtst0033
23.
Oyelakin
,
I. S.
,
Mondal
,
S.
, and
Sibanda
,
P.
,
2016
, “
Unsteady Casson Nanofluid Flow Over a Stretching Sheet With Thermal Radiation, Convective and Slip Boundary Conditions
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1025
1035
. 10.1016/j.aej.2016.03.003
24.
Kumar
,
K. A.
,
Sugunamma
,
V.
,
Sandeep
,
N.
, and
Mustafa
,
M. T.
,
2019
, “
Simultaneous Solutions for First Order and Second Order Slips on Micropolar Fluid Flow Across a Convective Surface in the Presence of Lorentz Force and Variable Heat Source/Sink
,”
Sci. Rep.
,
9
(
1
), p.
14706
. 10.1038/s41598-019-51242-5
25.
Goqo
,
S. P.
,
Mondal
,
S.
,
Sibanda
,
P.
, and
Motsa
,
S. S.
,
2016
, “
An Unsteady MHD Jeffery Nanofluid Flow Over a Shrinking Sheet With Thermal Radiation and Convective Boundary Condition Using Spectral Quasilinearisation Method
,”
J. Comput. Theor. Nanosci.
,
13
(
10
), pp.
7483
7492
. 10.1166/jctn.2016.5743
26.
Adesanya
,
S. O.
, and
Makinde
,
O. D.
,
2015
, “
Effects of Couple Stresses on Entropy Generation Rate in a Porous Channel With Convective Heating
,”
Comput. Appl. Math.
,
34
(
1
), pp.
293
307
. 10.1007/s40314-014-0117-z
27.
Srinivasacharya
,
D.
, and
Hima Bindu
,
K.
,
2015
, “
Entropy Generation in a Micropolar Fluid Flow Through an Inclined Channel With Slip and Convective Boundary Conditions
,”
Energy
,
91
(
C
), pp.
72
83
. 10.1016/j.energy.2015.08.014
28.
Yao
,
S.
,
Fang
,
T.
, and
Zhong
,
Y.
,
2011
, “
Heat Transfer of a Generalized Stretching/Shrinking Wall Problem With Convective Boundary Conditions
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
16
(
2
), pp.
752
760
. 10.1016/j.cnsns.2010.05.028
29.
Partha
,
M. K.
,
2010
, “
Nonlinear Convection in a Non-Darcy Porous Medium
,”
Appl. Math. Mech.
,
31
(
5
), pp.
565
574
. 10.1007/s10483-010-0504-6
30.
Kameswaran
,
P. K.
,
Sibanda
,
P.
,
Partha
,
M. K.
, and
Murthy
,
P. V. S. N.
,
2014
, “
Thermophoretic and Nonlinear Convection in Non-Darcy Porous Medium
,”
ASME J. Heat Trans.
,
136
(
4
), p.
042601(1-9)
. 10.1115/1.4025902
31.
Kameswaran
,
P. K.
,
Vasu
,
B.
,
Murthy
,
P. V. S. N.
, and
Gorla
,
R. S. R.
,
2016
, “
Mixed Convection From a Wavy Surface Embedded in a Thermally Stratified Nanofluid Saturated Porous Medium With Non-Linear Boussinesq Approximation
,”
Int. Commn. Heat Mass Trans.
,
77
, pp.
78
86
. 10.1016/j.icheatmasstransfer.2016.07.006
32.
Adesanya
,
S. O.
,
Ogunseye
,
H. A.
,
Lebelo
,
R. S.
,
Moloi
,
K. C.
, and
Adeyemi
,
O. G.
,
2018
, “
Second Law Analysis for Nonlinear Convective Flow of a Reactive Couple Stress Fluid Through a Vertical Channel
,”
Heliyon
,
4
(
11
), p.
e00907
. 10.1016/j.heliyon.2018.e00907
33.
Farooq
,
U.
,
Zhao
,
Y. L.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Liao
,
S. J.
,
2015
, “
Application of the HAM Based Mathematica Package BVPh 2.0 on MHD Falkner-Skan Flow of Nanofluid
,”
Comput. Fluid
,
111
, pp.
69
75
. 10.1016/j.compfluid.2015.01.005
34.
Abbasbandy
,
S.
,
2006
, “
The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
360
(
1
), pp.
109
113
. 10.1016/j.physleta.2006.07.065
35.
Yusuf
,
T. A.
,
Adesanya
,
S. O.
, and
Gbadeyan
,
J. A.
,
2020
, “
Entropy Generation in MHD Williamson Nanofluid Over a Convectively Heated Stretching Plate with Chemical Reaction
,”
Heat Transfer—Asian Res.
, pp.
1
18
. 10.1002/htj.21703
36.
Liao
,
S.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman and Hall/CRC Press
,
Boca Raton, FL
.
37.
Liao
,
S.
,
2012
,
Homotopy Analysis Method in Nonlinear Differential Equations
,
Springer
,
Heidelberg
.
You do not currently have access to this content.