Abstract

In the present paper, a numerical investigation of a jet-ejector is carried out using a real gas model of R1234yf. The prototype under investigation works with specific operating conditions of a jet-ejector refrigeration system intended for waste heat recovery in an internal combustion engine (ICE). In the first instance, the geometry optimization involving nozzle exit diameter, mixing chamber diameter, and nozzle exit position (NXP) is performed. Once the optimum geometry has been obtained, the jet-ejector prototype is tested with different operating pressure ratios to determine its off-design performance. The flow structure in relevant cases has been examined with an emphasis on critical and subcritical modes. The flow phenomena occurring during expansion, entrainment, and mixing processes are discussed so performance degradation can be directly related to physical processes. The analysis has been completed fitting simulated points to critical and subcritical planar surfaces. The results in terms of goodness of fit are satisfactory so the jet-ejector performance in off-design operating conditions can be reflected through simple mathematic models. When the overall cycle is assessed by using previous computational fluid dynamics (CFD) maps, it is observed that the achievable cooling drops significantly when an ambient temperature of 31 °C is exceeded.

References

1.
Varga
,
S.
,
Oliveira
,
A. C.
, and
Diaconu
,
B.
,
2009
, “
Influence of Geometrical Factors on Steam Ejector Performance—A Numerical Assessment
,”
Int. J. Refrig.
,
32
(
7
), pp.
1694
1701
. 10.1016/j.ijrefrig.2009.05.009
2.
Yan
,
J.
,
Cai
,
W.
, and
Li
,
Y.
,
2012
, “
Geometry Parameters Effect for Air-Cooled Ejector Cooling Systems With R134a Refrigerant
,”
Renew. Energy
,
46
, pp.
155
163
. 10.1016/j.renene.2012.03.031
3.
He
,
S.
,
Li
,
Y.
, and
Wang
,
R. Z.
,
2009
, “
Progress of Mathematical Modeling on Ejectors
,”
Renew. Sustain. Energy Rev.
,
13
(
8
), pp.
1760
1780
. 10.1016/j.rser.2008.09.032
4.
Zhu
,
Y.
,
Cai
,
W.
,
Wen
,
C.
, and
Li
,
Y.
,
2009
, “
Numerical Investigation of Geometry Parameters for Design of High Performance Ejectors
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
898
905
. 10.1016/j.applthermaleng.2008.04.025
5.
Jia
,
Y.
, and
Wenjian
,
C.
,
2012
, “
Area Ratio Effects to the Performance of Air-Cooled Ejector Refrigeration Cycle With R134a Refrigerant
,”
Energy Convers. Manag.
,
53
(
1
), pp.
240
246
. 10.1016/j.enconman.2011.09.002
6.
Wang
,
L.
,
Yan
,
J.
,
Wang
,
C.
, and
Li
,
X.
,
2017
, “
Numerical Study on Optimization of Ejector Primary Nozzle Geometries
,”
Int. J. Refrig.
,
76
, pp.
219
229
. 10.1016/j.ijrefrig.2017.02.010
7.
Ruangtrakoon
,
N.
,
Thongtip
,
T.
,
Aphornratana
,
S.
, and
Sriveerakul
,
T.
,
2013
, “
CFD Simulation on the Effect of Primary Nozzle Geometries for a Steam Ejector in Refrigeration Cycle
,”
Int. J. Therm. Sci.
,
63
, pp.
133
145
. 10.1016/j.ijthermalsci.2012.07.009
8.
Dong
,
J.
,
Kang
,
C. L.
,
Wang
,
H. M.
, and
Ma
,
H. B.
,
2016
, “
Experimental Investigation of Steam Ejector System With an Extra Low Generating Temperature
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
2
. 10.1115/1.4032483
9.
Soroureddin
,
A.
,
Mehr
,
A. S.
,
Mahmoudi
,
S. M. S.
, and
Yari
,
M.
,
2013
, “
An Experimental and Theoretical Study of a Jet-Pump Refrigeration System Designed Using a New Two-Dimensional Model for the Entrainment Region of the Ejector
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
227
(
4
), pp.
486
497
. 10.1177/0957650913477092
10.
Zhu
,
Y.
, and
Jiang
,
P.
,
2014
, “
Experimental and Analytical Studies on the Shock Wave Length in Convergent and Convergent-Divergent Nozzle Ejectors
,”
Energy Convers. Manag.
,
88
, pp.
907
914
. 10.1016/j.enconman.2014.09.023
11.
Zhu
,
Y.
, and
Jiang
,
P.
,
2014
, “
Experimental and Numerical Investigation of the Effect of Shock Wave Characteristics on the Ejector Performance
,”
Int. J. Refrig.
,
40
, pp.
31
42
. 10.1016/j.ijrefrig.2013.11.008
12.
Sargolzaei
,
J.
,
Pirzadi Jahromi
,
M. R.
, and
Saljoughi
,
E.
,
2010
, “
Triple-Choking Model for Ejector
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
2
), p.
021009
. 10.1115/1.4002752
13.
Armstead
,
J. R.
, and
Miers
,
S. A.
,
2013
, “
Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
). 10.1115/1.4024882
14.
Luján
,
J. M.
,
Climent
,
H.
,
Dolz
,
V.
,
Moratal
,
A.
,
Borges-Alejo
,
J.
, and
Soukeur
,
Z.
,
2016
, “
Potential of Exhaust Heat Recovery for Intake Charge Heating in a Diesel Engine Transient Operation at Cold Conditions
,”
Appl. Therm. Eng.
,
105
, pp.
501
508
. 10.1016/j.applthermaleng.2016.03.028
15.
Aghaali
,
H.
, and
Ångström
,
H. E.
,
2015
, “
A Review of Turbocompounding as a Waste Heat Recovery System for Internal Combustion Engines
,”
Renew. Sustain. Energy Rev.
,
49
, pp.
813
824
. 10.1016/j.rser.2015.04.144
16.
Hsiao
,
Y. Y.
,
Chang
,
W. C.
, and
Chen
,
S. L.
,
2010
, “
A Mathematic Model of Thermoelectric Module With Applications on Waste Heat Recovery From Automobile Engine
,”
Energy
,
35
(
3
), pp.
1447
1454
. 10.1016/j.energy.2009.11.030
17.
In
,
B. D.
, and
Lee
,
K. H.
,
2016
, “
A Study of a Thermoelectric Generator Applied to a Diesel Engine
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
230
(
1
), pp.
133
143
. 10.1177/0954407015576440
18.
Dolz
,
V.
,
Novella
,
R.
,
García
,
A.
, and
Sánchez
,
J.
,
2012
, “
HD Diesel Engine Equipped With a Bottoming Rankine Cycle as a Waste Heat Recovery System. Part 1: Study and Analysis of the Waste Heat Energy
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
269
278
. 10.1016/j.applthermaleng.2011.10.025
19.
Aly
,
S. E.
,
1988
, “
Diesel Engine Waste-Heat Power Cycle
,”
Appl. Energy
,
29
(
3
), pp.
179
189
. 10.1016/0306-2619(88)90027-X
20.
Galindo
,
J.
,
Ruiz
,
S.
,
Dolz
,
V.
,
Royo-Pascual
,
L.
,
Haller
,
R.
,
Nicolas
,
B.
, and
Glavatskaya
,
Y.
,
2015
, “
Experimental and Thermodynamic Analysis of a Bottoming Organic Rankine Cycle (ORC) of Gasoline Engine Using Swash-Plate Expander
,”
Energy Convers. Manag.
,
103
, pp.
519
532
. 10.1016/j.enconman.2015.06.085
21.
Glover
,
S.
,
Douglas
,
R.
,
Glover
,
L.
, and
McCullough
,
G.
,
2014
, “
Preliminary Analysis of Organic Rankine Cycles to Improve Vehicle Efficiency
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
228
(
10
), pp.
1142
1153
. 10.1177/0954407014528904
22.
Zegenhagen
,
M. T.
, and
Ziegler
,
F.
,
2015
, “
Feasibility Analysis of an Exhaust Gas Waste Heat Driven Jet-Ejector Cooling System for Charge Air Cooling of Turbocharged Gasoline Engines
,”
Appl. Energy
,
160
, pp.
221
230
. 10.1016/j.apenergy.2015.09.057
23.
Novella
,
R.
,
Dolz
,
V.
,
Martín
,
J.
, and
Royo-Pascual
,
L.
,
2017
, “
Thermodynamic Analysis of an Absorption Refrigeration System Used to Cool Down the Intake Air in an Internal Combustion Engine
,”
Appl. Therm. Eng.
,
111
, pp.
257
270
. 10.1016/j.applthermaleng.2016.09.084
24.
Galindo
,
J.
,
Dolz
,
V.
,
Tiseira
,
A.
, and
Ponce-Mora
,
A.
,
2019
, “
Thermodynamic Analysis and Optimization of a Jet Ejector Refrigeration Cycle Used to Cool Down the Intake Air in an IC Engine
,”
Int. J. Refrig.
,
103
, pp.
253
263
. 10.1016/j.ijrefrig.2019.04.019
25.
Galindo
,
J.
,
Serrano
,
J.
,
Dolz
,
V.
, and
Kleut
,
P.
,
2015
, “
Brayton Cycle for Internal Combustion Engine Exhaust Gas Waste Heat Recovery
,”
Adv. Mech. Eng.
,
7
(
6
), p.
168781401559031
. 10.1177/1687814015590314
26.
Zegenhagen
,
M. T.
, and
Ziegler
,
F.
,
2015
, “
Experimental Investigation of the Characteristics of a Jet-Ejector and a Jet-Ejector Cooling System Operating With R134a as a Refrigerant
,”
Int. J. Refrig.
,
56
, pp.
173
185
. 10.1016/j.ijrefrig.2015.01.001
27.
Chen
,
X.
,
Worall
,
M.
,
Omer
,
S.
,
Su
,
Y.
, and
Riffat
,
S.
,
2013
, “
Theoretical Studies of a Hybrid Ejector CO2 Compression Cooling System for Vehicles and Preliminary Experimental Investigations of an Ejector Cycle
,”
Appl. Energy
,
102
, pp.
931
942
. 10.1016/j.apenergy.2012.09.032
28.
Sriveerakul
,
T.
,
Aphornratana
,
S.
, and
Chunnanond
,
K.
,
2007
, “
Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 2. Flow Structure of a Steam Ejector Influenced by Operating Pressures and Geometries
,”
Int. J. Therm. Sci.
,
46
(
8
), pp.
823
833
. 10.1016/j.ijthermalsci.2006.10.012
29.
Bartosiewicz
,
Y.
,
Aidoun
,
Z.
,
Desevaux
,
P.
, and
Mercadier
,
Y.
,
2005
, “
Numerical and Experimental Investigations on Supersonic Ejectors
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
56
70
. 10.1016/j.ijheatfluidflow.2004.07.003
30.
Mazzelli
,
F.
,
Little
,
A. B.
,
Garimella
,
S.
, and
Bartosiewicz
,
Y.
,
2015
, “
Computational and Experimental Analysis of Supersonic Air Ejector: Turbulence Modeling and Assessment of 3D Effects
,”
Int. J. Heat Fluid Flow
,
56
, pp.
305
316
. 10.1016/j.ijheatfluidflow.2015.08.003
31.
Mazzelli
,
F.
, and
Milazzo
,
A.
,
2015
, “
Performance Analysis of a Supersonic Ejector Cycle Working With R245fa
,”
Int. J. Refrig.
,
49
, pp.
79
92
. 10.1016/j.ijrefrig.2014.09.020
32.
Croquer
,
S.
,
Poncet
,
S.
, and
Aidoun
,
Z.
,
2016
, “
Turbulence Modeling of a Single-Phase R134a Supersonic Ejector. Part 1: Numerical Benchmark
,”
Int. J. Refrig.
,
61
, pp.
140
152
. 10.1016/j.ijrefrig.2015.07.030
33.
Lee
,
Y.
, and
Jung
,
D.
,
2012
, “
A Brief Performance Comparison of R1234yf and R134a in a Bench Tester for Automobile Applications
,”
Appl. Therm. Eng.
,
35
(
1
), pp.
240
242
. 10.1016/j.applthermaleng.2011.09.004
34.
Vaghela
,
J. K.
,
2017
, “
Comparative Evaluation of an Automobile Air-Conditioning System Using R134a and Its Alternative Refrigerants
,”
Energy Proc.
,
109
, pp.
153
160
. 10.1016/j.egypro.2017.03.083
35.
Wang
,
L.
,
Liu
,
J.
,
Zou
,
T.
,
Du
,
J.
, and
Jia
,
F.
,
2018
, “
Auto-Tuning Ejector for Refrigeration System
,”
Energy
,
161
, pp.
536
543
. 10.1016/j.energy.2018.07.110
36.
Chen
,
S.
,
Chen
,
G.
, and
Fang
,
L.
,
2015
, “
An Experimental Study and 1-D Analysis of an Ejector With a Movable Primary Nozzle That Operates With R236fa
,”
Int. J. Refrig.
,
60
, pp.
19
25
. 10.1016/j.ijrefrig.2015.08.011
37.
Zegenhagen
,
M. T.
, and
Ziegler
,
F.
,
2015
, “
A One-Dimensional Model of a Jet-Ejector in Critical Double Choking Operation With R134a as a Refrigerant Including Real Gas Effects
,”
Int. J. Refrig.
,
55
(
2006
), pp.
72
84
. 10.1016/j.ijrefrig.2015.03.013
38.
Besagni
,
G.
,
Mereu
,
R.
,
Chiesa
,
P.
, and
Inzoli
,
F.
,
2015
, “
An Integrated Lumped Parameter-CFD Approach for Off-Design Ejector Performance Evaluation
,”
Energy Convers. Manag.
,
105
, pp.
697
715
. 10.1016/j.enconman.2015.08.029
39.
Gagan
,
J.
,
Smierciew
,
K.
,
Butrymowicz
,
D.
, and
Karwacki
,
J.
,
2014
, “
Comparative Study of Turbulence Models in Application to Gas Ejectors
,”
Int. J. Therm. Sci.
,
78
, pp.
9
15
. 10.1016/j.ijthermalsci.2013.11.009
40.
Hakkaki-Fard
,
A.
,
Aidoun
,
Z.
, and
Ouzzane
,
M.
,
2015
, “
A Computational Methodology for Ejector Design and Performance Maximisation
,”
Energy Convers. Manag.
,
105
, pp.
1291
1302
. 10.1016/j.enconman.2015.08.070
41.
Besagni
,
G.
, and
Inzoli
,
F.
,
2017
, “
Computational Fluid-Dynamics Modeling of Supersonic Ejectors: Screening of Turbulence Modeling Approaches
,”
Appl. Therm. Eng.
,
117
, pp.
122
144
. 10.1016/j.applthermaleng.2017.02.011
42.
Pianthong
,
K.
,
Seehanam
,
W.
,
Behnia
,
M.
,
Sriveerakul
,
T.
, and
Aphornratana
,
S.
,
2007
, “
Investigation and Improvement of Ejector Refrigeration System Using Computational Fluid Dynamics Technique
,”
Energy Convers. Manag.
,
48
(
9
), pp.
2556
2564
. 10.1016/j.enconman.2007.03.021
43.
Richter
,
M.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2011
, “
Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-Ene (R1234yf): Vapor Pressure and p–φ–T Measurements and an Equation of State
,”
J. Chem. Eng. Data
,
56
(
7
), pp.
3254
3264
. 10.1021/je200369m
44.
García Del Valle
,
J.
,
Saíz Jabardo
,
J. M.
,
Castro Ruiz
,
F.
, and
San José Alonso
,
J. F.
,
2014
, “
An Experimental Investigation of a R-134a Ejector Refrigeration System
,”
Int. J. Refrig.
,
46
, pp.
105
113
. 10.1016/j.ijrefrig.2014.05.028
45.
Poles
,
S.
,
Geremia
,
P.
,
Campos
,
F.
,
Weston
,
S.
, and
Islam
,
M.
,
2007
, “MOGA-II for an Automotive Cooling Duct Optimization on Distributed Resources,”
Evolutionary Multi-Criterion Optimization
,
S.
Obayashi
,
K.
Deb
,
C.
Poloni
,
T.
Hiroyasu
, and
T.
Murata
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
633
644
.
You do not currently have access to this content.