Abstract

One way of achieving higher efficiency in electro-mechanical is by inducing vortices over the heated surface with the help of a vortex generator (VG). The strength of these vortices is proportionate to the amount of heat transported. In this paper, the evolution and propagation of the produced primary vortex behind a VG with the attached secondary surface (SS) are studied experimentally and numerically. The addition of SS is found to augment heat transfer significantly with an additional drag. The obtained experimental results complement the numerical predictions for the modified VG. Linear regression analysis is performed to optimize the geometry of SS for a higher heat extraction rate and lower drag. The SS placed at an optimum location increases the Nusselt number on the heated plate by 8.9%, with a decrement in the drag by 3.2%, compared to the reference case. The addition of SS produces a vortex of higher strength and propagates downstream at a slower rate. Moreover, it exposes the vortex to higher shear in the flow, which in turn enhances the heat transfer rate.

References

References
1.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2019
, “
Numerical and Experimental Study of the Effect of Secondary Surfaces Fixed Over a Rectangular Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061003
. 10.1115/1.4043007
2.
Patankar
,
S.
, and
Prakash
,
C.
,
1981
, “
An Analysis of the Effect of Plate Thickness on Laminar Flow and Heat Transfer in Interrupted-Plate Passages
,”
Int. J. Heat Mass Transfer
,
24
(
11
), pp.
1801
1810
. 10.1016/0017-9310(81)90146-0
3.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1993
, “
Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel With Double Rows of Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2327
2337
. 10.1016/S0017-9310(05)80117-6
4.
Biswas
,
G.
, and
Chattopadhyay
,
H.
,
1992
, “
Heat Transfer in a Channel With Built-in Wing-Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
803
814
. 10.1016/0017-9310(92)90248-Q
5.
Fiebig
,
M.
,
Grosse-Gorgemann
,
A.
,
Chen
,
Y.
, and
Mitra
,
N.
,
1995
, “
Conjugate Heat Transfer of a Finned Tube Part A: Heat Transfer Behavior and Occurrence of Heat Transfer Reversal
,”
Numer. Heat Transfer A
,
28
(
2
), pp.
133
146
. 10.1080/10407789508913737
6.
Fiebig
,
M.
,
Chen
,
Y.
,
Grosse-Gorgemann
,
A.
, and
Mitra
,
N.
,
1995
, “
Conjugate Heat Transfer of a Finned Tube Part B: Heat Transfer Augmentation and Avoidance of Heat Transfer Reversal by Longitudinal Vortex Generators
,”
Numer. Heat Transfer A
,
28
(
2
), pp.
147
155
. 10.1080/10407789508913738
7.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3441
3451
. 10.1016/0017-9310(95)00398-3
8.
Gentry
,
M.
, and
Jacobi
,
A. M.
,
2002
, “
Heat Transfer Enhancement by Delta-Wing-Generated Tip Vortices in Flat-Plate and Developing Channel Flows
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1158
1168
. 10.1115/1.1513578
9.
Wu
,
J.
, and
Tao
,
W.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Channel With Longitudinal Vortex Generator. Part B: Parametric Study of Major Influence Factors
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3683
3692
. 10.1016/j.ijheatmasstransfer.2007.03.031
10.
Wu
,
J.
, and
Tao
,
W.
,
2012
, “
Effect of Longitudinal Vortex Generator on Heat Transfer in Rectangular Channels
,”
Appl. Therm. Eng.
,
37
, pp.
67
72
. 10.1016/j.applthermaleng.2012.01.002
11.
Ebrahimi
,
A.
,
Roohi
,
E.
, and
Kheradmand
,
S.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
78
, pp.
576
583
. 10.1016/j.applthermaleng.2014.12.006
12.
Li
,
L.
,
Du
,
X.
,
Zhang
,
Y.
,
Yang
,
L.
, and
Yang
,
Y.
,
2015
, “
Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Int. J. Therm. Sci.
,
92
, pp.
85
96
. 10.1016/j.ijthermalsci.2015.01.030
13.
Song
,
K.
,
Liu
,
S.
, and
Wang
,
L.
,
2016
, “
Interaction of Counter Rotating Longitudinal Vortices and the Effect on Fluid Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
93
, pp.
349
360
. 10.1016/j.ijheatmasstransfer.2015.10.001
14.
Abdollahi
,
A.
, and
Shams
,
M.
,
2015
, “
Optimization of Shape and Angle of Attack of Winglet Vortex Generator in a Rectangular Channel for Heat Transfer Enhancement
,”
Appl. Therm. Eng.
,
81
, pp.
376
387
. 10.1016/j.applthermaleng.2015.01.044
15.
Vitillo
,
F.
,
Cachon
,
L.
,
Reulet
,
F.
, and
Millan
,
P.
,
2016
, “
Flow Analysis of an Innovative Compact Heat Exchanger Channel Geometry
,”
Int. J. Heat Fluid Flow
,
58
, pp.
30
39
. 10.1016/j.ijheatfluidflow.2015.11.006
16.
Lu
,
G.
, and
Zhou
,
G.
,
2016
, “
Numerical Simulation on Performances of Plane and Curved Winglet—Pair Vortex Generators in a Rectangular Channel and Field Synergy Analysis
,”
Int. J. Therm. Sci.
,
109
, pp.
323
333
. 10.1016/j.ijthermalsci.2016.06.024
17.
Zhang
,
Q.
,
Wang
,
L.-B.
, and
Zhang
,
Y.-H.
,
2017
, “
The Mechanism of Heat Transfer Enhancement Using Longitudinal Vortex Generators in a Laminar Channel Flow With Uniform Wall Temperature
,”
Int. J. Therm. Sci.
,
117
, pp.
26
43
. 10.1016/j.ijthermalsci.2017.03.003
18.
Chen
,
L.
,
Brakmann
,
R. G.
,
Weigand
,
B.
,
Rodriguez
,
J.
,
Crawford
,
M.
, and
Poser
,
R.
,
2017
, “
Experimental and Numerical Heat Transfer Investigation of an Impingement Jet Array With V-Ribs on the Target Plate and on the Impingement Plate
,”
Int. J. Heat Fluid Flow
,
68
, pp.
126
138
. 10.1016/j.ijheatfluidflow.2017.09.005
19.
Promvonge
,
P.
,
Chompookham
,
T.
,
Kwankaomeng
,
S.
, and
Thianpong
,
C.
,
2010
, “
Enhanced Heat Transfer in a Triangular Ribbed Channel With Longitudinal Vortex Generators
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1242
1249
. 10.1016/j.enconman.2009.12.035
20.
Wu
,
J.
, and
Tao
,
W.
,
2011
, “
Impact of Delta Winglet Vortex Generators on the Performance of a Novel Fin-Tube Surfaces With Two Rows of Tubes in Different Diameters
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2895
2901
. 10.1016/j.enconman.2011.03.002
21.
Wu
,
J.
,
Zhang
,
H.
,
Yan
,
C.
, and
Wang
,
Y.
,
2012
, “
Experimental Study on the Performance of a Novel Fin-Tube Air Heat Exchanger With Punched Longitudinal Vortex Generator
,”
Energy Convers. Manage.
,
57
, pp.
42
48
. 10.1016/j.enconman.2011.12.009
22.
Promvonge
,
P.
, and
Eiamsa-Ard
,
S.
,
2006
, “
Heat Transfer Enhancement in a Tube With Combined Conical-Nozzle Inserts and Swirl Generator
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
2867
2882
. 10.1016/j.enconman.2006.03.034
23.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2018
, “
Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate From a Surface to Fluid
,”
Int. J. Therm. Sci.
,
127
, pp.
61
78
. 10.1016/j.ijthermalsci.2018.01.004
24.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2018
, “
Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate From a Surface to Fluid: An Extended Study
,”
Int. J. Therm. Sci.
,
134
, pp.
269
281
. 10.1016/j.ijthermalsci.2018.08.020
25.
Zhou
,
G.
, and
Feng
,
Z.
,
2014
, “
Experimental Investigations of Heat Transfer Enhancement by Plane and Curved Winglet Type Vortex Generators With Punched Holes
,”
Int. J. Therm. Sci.
,
78
, pp.
26
35
. 10.1016/j.ijthermalsci.2013.11.010
26.
Saha
,
S. K.
,
Tiwari
,
M.
,
Sundén
,
B.
, and
Wu
,
Z.
,
2016
,
Advances in Heat Transfer Enhancement
,
Springer
,
New York
.
27.
Saffman
,
P. G.
,
1992
,
Vortex Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
28.
Moffatt
,
H.
, and
Tsinober
,
A.
,
1992
, “
Helicity in Laminar and Turbulent Flow
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
281
312
. 10.1146/annurev.fl.24.010192.001433
29.
Weiss
,
J.
,
1991
, “
The Dynamics of Enstrophy Transfer in Two-Dimensional Hydrodynamics
,”
Phys. D Nonlinear Phenom.
,
48
(
2–3
), pp.
273
294
. 10.1016/0167-2789(91)90088-Q
30.
Roache
,
P. J.
,
1994
, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluid. Eng.
,
116
(
3
), pp.
405
413
.
31.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D.
,
2008
,
Fluid Mechanics
, 4th ed.,
Academic Press
,
Oxford
.
You do not currently have access to this content.