Abstract

The triple-bed circulating fluidized bed gasifier is a new type of the gasification process in which the combustion process, pyrolysis process, and gasification process of the fuel are carried out in different reactors. The inert heat carrier is used to transfer heat between the reactors. In this way, the gasification efficiency of char is improved since the tar and pyrolysis gas generated in the pyrolysis process will no longer hinder the gasification of the char. The thermodynamic equilibrium model is used to simulate the gasification process of the triple-bed circulating fluidized bed, and the sub-models are established to simulate combustion, pyrolysis, and gasification processes. The simulation results agree well with the experimental values. Besides, the model studies the effects of key parameters such as the gasification reaction temperature and the ratio of steam to C (S/C) on gasification performance. Results showed that higher gasification reaction temperature has a positive effect on gasification performance, S/C may not be too high, and excessive water vapor will directly affect the gasification reaction.

References

References
1.
Suping
,
P.
,
Bo
,
Z.
, and
Tong
,
W.
,
2015
, “
China’s Coal Resources: Octothorpe Shaped Distribution Characteristics and Sustainable Development Strategies
,”
Strategic Study Chin. Acad. Eng.
,
17
(
9
), pp.
29
35
.
2.
Xie
,
X.
,
Ai
,
H.
, and
Deng
,
Z.
,
2019
, “
Impacts of the Scattered Coal Consumption on PM2.5 Pollution in China
,”
J. Cleaner Prod.
,
245
(
1
), pp.
1
10
.
3.
You
,
C. F.
, and
Xu
,
X. C.
,
2010
, “
Coal Combustion and Its Pollution Control in China
,”
Energy
,
35
(
11
), pp.
4467
4472
. 10.1016/j.energy.2009.04.019
4.
Bell
,
D. A.
,
Towler
,
B. F.
, and
Fan
,
M.
,
2011
, “Hydrogen Production and Integrated Gasification Combined Cycle (IGCC),”
Coal Gasification and Its Applications
,
D. A.
Bell
,
B. F.
Towler
, and
M.
Fan
, eds.,
William Andrew Publishing
,
Boston
, pp.
137
156
.
5.
Zou
,
C.
,
Chen
,
Y.
,
Kong
,
L.
,
Sun
,
F.
,
Chen
,
S.
, and
Dong
,
Z.
,
2019
, “
Underground Coal Gasification and Its Strategic Significance to the Development of Natural Gas Industry in China
,”
Pet. Explor. Dev.
,
46
(
2
), pp.
205
215
. 10.1016/S1876-3804(19)60002-9
6.
Higman
,
C.
, and
Burgt
,
M. V. D.
,
2008
,
Gasification
, 2nd ed.,
Elsevier, Gulf Professional Publishing
,
New York
.
7.
Cao
,
Y.
,
Wang
,
Q.
,
Du
,
J.
, and
Chen
,
J.
,
2019
, “
Oxygen-Enriched Air Gasification of Biomass Materials for High-Quality Syngas Production
,”
Energy Convers. Manage.
,
199
(
11
), pp.
1
6
. 10.1016/j.enconman.2019.05.054
8.
Liu
,
C.
,
Huang
,
Y.
,
Niu
,
M.
,
Pei
,
H.
,
Liu
,
L.
,
Wang
,
Y.
,
Dong
,
L.
, and
Xu
,
L.
,
2018
, “
Influences of Equivalence Ratio, Oxygen Concentration and Fluidization Velocity on the Characteristics of Oxygen-Enriched Gasification Products From Biomass in a Pilot-Scale Fluidized Bed
,”
Int. J. Hydrogen Energy
,
43
(
31
), pp.
14214
14225
. 10.1016/j.ijhydene.2018.05.154
9.
Basu
,
P.
,
2006
,
Combustion and Gasification in Fluidized Beds
,
Taylor & Francis Group, LLC
,
Boca Raton, FL
.
10.
Kern
,
S.
,
Pfeifer
,
C.
, and
Hofbauer
,
H.
,
2012
, “
Synergetic Utilization of Renewable and Fossil Fuels: Dual Fluidized Bed Steam Co-Gasification of Coal and Wood
,”
APCBEE Procedia
,
1
(
1
), pp.
136
140
. 10.1016/j.apcbee.2012.03.022
11.
Zhang
,
Y.
,
Wang
,
Y.
,
Cai
,
L.
,
Yao
,
C.
,
Gao
,
S.
,
Li
,
C.-Z.
, and
Xu
,
G.
,
2013
, “
Dual Bed Pyrolysis Gasification of Coal: Process Analysis and Pilot Test
,”
Fuel
,
112
(
10
), pp.
624
634
. 10.1016/j.fuel.2012.01.038
12.
Xiang
,
X.
,
Gong
,
G.
,
Shen
,
Y.
,
Wang
,
C.
, and
Shi
,
Y.
,
2019
, “
A Comprehensive Mathematical Model of a Serial Composite Process for Biomass and Coal Co-Gasification
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
2603
2619
. 10.1016/j.ijhydene.2018.12.077
13.
Xiang
,
X.
,
Gong
,
G.
,
Shi
,
Y.
,
Cai
,
Y.
, and
Wang
,
C.
,
2018
, “
Thermodynamic Modeling and Analysis of a Serial Composite Process for Biomass and Coal Co-Gasification
,”
Renew. Sustain. Energy Rev.
,
82
(
3
), pp.
2768
2778
. 10.1016/j.rser.2017.10.008
14.
Cohce
,
M. K.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2010
, “
Thermodynamic Analysis of Hydrogen Production From Biomass Gasification
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4970
4980
. 10.1016/j.ijhydene.2009.08.066
15.
Shabbar
,
S.
, and
Janajreh
,
I.
,
2013
, “
Thermodynamic Equilibrium Analysis of Coal Gasification Using Gibbs Energy Minimization Method
,”
Energy Convers. Manage.
,
65
(
1
), pp.
755
763
. 10.1016/j.enconman.2012.02.032
16.
Wei
,
L.
,
Xu
,
S.
,
Liu
,
J.
,
Lu
,
C.
,
Liu
,
S.
, and
Liu
,
C.
,
2006
, “
A Novel Process of Biomass Gasification for Hydrogen-Rich Gas With Solid Heat Carrier: Preliminary Experimental Results
,”
Energy Fuels
,
20
(
5
), pp.
2266
2273
. 10.1021/ef060137w
17.
Kaiser
,
S.
,
Löffler
,
G.
,
Bosch
,
K.
, and
Hofbauer
,
H.
,
2003
, “
Hydrodynamics of a Dual Fluidized Bed Gasifier. Part II: Simulation of Solid Circulation Rate, Pressure Loop and Stability
,”
Chem. Eng. Sci.
,
58
(
18
), pp.
4215
4223
. 10.1016/S0009-2509(03)00233-1
18.
Xu
,
G.
,
Murakami
,
T.
,
Suda
,
T.
,
Matsuzawa
,
Y.
, and
Tani
,
H.
,
2006
, “
Gasification of Coffee Grounds in Dual Fluidized Bed: Performance Evaluation and Parametric Investigation
,”
Energy Fuels
,
20
(
6
), pp.
2695
2704
. 10.1021/ef060120d
19.
Matsuoka
,
K.
,
Kuramoto
,
K.
,
Murakami
,
T.
, and
Suzuki
,
Y.
,
2008
, “
Steam Gasification of Woody Biomass in a Circulating Dual Bubbling Fluidized Bed System
,”
Energy Fuels
,
22
(
3
), pp.
1980
1985
. 10.1021/ef700726s
20.
Wilk
,
V.
, and
Hofbauer
,
H.
,
2013
, “
Co-Gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels
,”
Energy Fuels
,
27
(
6
), pp.
3261
3273
. 10.1021/ef400349k
21.
Wilk
,
V.
, and
Hofbauer
,
H.
,
2013
, “
Conversion of Mixed Plastic Wastes in a Dual Fluidized Bed Steam Gasifier
,”
Fuel
,
107
(
5
), pp.
787
799
. 10.1016/j.fuel.2013.01.068
22.
Wilk
,
V.
,
Schmid
,
J. C.
, and
Hofbauer
,
H.
,
2013
, “
Influence of Fuel Feeding Positions on Gasification in Dual Fluidized Bed Gasifiers
,”
Biomass Bioenergy
,
54
(
7
), pp.
46
58
. 10.1016/j.biombioe.2013.03.018
23.
Pröll
,
T.
, and
Hofbauer
,
H.
,
2008
, “
H2 Rich Syngas by Selective CO2 Removal From Biomass Gasification in a Dual Fluidized Bed System—Process Modelling Approach
,”
Fuel Process. Technol.
,
89
(
11
), pp.
1207
1217
. 10.1016/j.fuproc.2008.05.020
24.
Constantinou
,
D. A.
,
Fierro
,
J. L. G.
, and
Efstathiou
,
A. M.
,
2010
, “
A Comparative Study of the Steam Reforming of Phenol Towards H2 Production Over Natural Calcite, Dolomite and Olivine Materials
,”
Appl. Catal., B
,
95
(
3
), pp.
255
269
. 10.1016/j.apcatb.2010.01.003
25.
Guan
,
G.
,
Fushimi
,
C.
,
Ishizuka
,
M.
,
Nakamura
,
Y.
,
Tsutsumi
,
A.
,
Matsuda
,
S.
,
Suzuki
,
Y.
,
Hatano
,
H.
,
Cheng
,
Y.
,
Chuan Lim
,
E. W.
, and
Wang
,
C.-H.
,
2011
, “
Flow Behaviors in the Downer of a Large-Scale Triple-Bed Combined Circulating Fluidized Bed System With High Solids Mass Fluxes
,”
Chem. Eng. Sci.
,
66
(
18
), pp.
4212
4220
. 10.1016/j.ces.2011.06.006
26.
Guan
,
G.
,
Fushimi
,
C.
,
Tsutsumi
,
A.
,
Ishizuka
,
M.
,
Matsuda
,
S.
,
Hatano
,
H.
, and
Suzuki
,
Y.
,
2010
, “
High-Density Circulating Fluidized Bed Gasifier for Advanced IGCC/IGFC—Advantages and Challenges
,”
Particuology
,
8
(
6
), pp.
602
606
. 10.1016/j.partic.2010.07.013
27.
Guan
,
G.
,
Fushimi
,
C.
, and
Tsutsumi
,
A.
,
2010
, “
Prediction of Flow Behavior of the Riser in a Novel High Solids Flux Circulating Fluidized Bed for Steam Gasification of Coal or Biomass
,”
Chem. Eng. J.
,
164
(
1
), pp.
221
229
. 10.1016/j.cej.2010.08.005
28.
Tursun
,
Y.
,
Xu
,
S.
,
Abulikemu
,
A.
, and
Dilinuer
,
T.
,
2019
, “
Biomass Gasification for Hydrogen Rich Gas in a Decoupled Triple Bed Gasifier With Olivine and NiO/Olivine
,”
Bioresour. Technol.
,
272
(
1
), pp.
241
248
. 10.1016/j.biortech.2018.10.008
29.
Fushimi
,
C.
,
Guan
,
G.
,
Nakamura
,
Y.
,
Ishizuka
,
M.
,
Tsutsumi
,
A.
,
Matsuda
,
S.
,
Hatano
,
H.
, and
Suzuki
,
Y.
,
2011
, “
Hydrodynamic Characteristics of a Large-Scale Triple-Bed Combined Circulating Fluidized Bed
,”
Powder Technol.
,
209
(
1
), pp.
1
8
. 10.1016/j.powtec.2011.01.018
30.
Yoshie
,
Y.
,
Ishizuka
,
M.
,
Guan
,
G.
,
Fushimi
,
C.
, and
Tsutsumi
,
A.
,
2013
, “
A Novel Experimental Technique to Determine the Heat Transfer Coefficient Between the Bed and Particles in a Downer
,”
Adv. Powder Technol.
,
24
(
2
), pp.
487
494
. 10.1016/j.apt.2012.11.013
31.
Cheng
,
Y.
,
Zhang
,
W.
,
Guan
,
G.
,
Fushimi
,
C.
,
Tsutsumi
,
A.
, and
Wang
,
C.-H.
,
2014
, “
Numerical Studies of Solid–Solid Mixing Behaviors in a Downer Reactor for Coal Pyrolysis
,”
Powder Technol.
,
253
(
2
), pp.
722
732
. 10.1016/j.powtec.2013.11.042
32.
Shu
,
Z.
,
Fan
,
C.
,
Li
,
S.
, and
Wang
,
J.
,
2016
, “
Multifluid Modeling of Coal Pyrolysis in a Downer Reactor
,”
Ind. Eng. Chem. Res.
,
55
(
9
), pp.
2634
2645
.
33.
Fushimi
,
C.
,
Ishizuka
,
M.
,
Guan
,
G.
,
Suzuki
,
Y.
,
Norinaga
,
K.
,
Hayashi
,
J.-I.
, and
Tsutsumi
,
A.
,
2014
, “
Hydrodynamic Behavior of Binary Mixture of Solids in a Triple-Bed Combined Circulating Fluidized Bed With High Mass Flux
,”
Adv. Powder Technol.
,
25
(
1
), pp.
379
388
. 10.1016/j.apt.2013.06.007
34.
Matsuoka
,
K.
,
Hosokai
,
S.
,
Kuramoto
,
K.
, and
Suzuki
,
Y.
,
2013
, “
Enhancement of Coal Char Gasification Using a Pyrolyzer–Gasifier Isolated Circulating Fluidized Bed Gasification System
,”
Fuel Process. Technol.
,
109
(
5
), pp.
43
48
. 10.1016/j.fuproc.2012.09.036
35.
Loha
,
C.
,
Gu
,
S.
,
De Wilde
,
J.
,
Mahanta
,
P.
, and
Chatterjee
,
P. K.
,
2014
, “
Advances in Mathematical Modeling of Fluidized Bed Gasification
,”
Renew. Sustain. Energy Rev.
,
40
(
12
), pp.
688
715
. 10.1016/j.rser.2014.07.199
36.
Gungor
,
A.
,
2008
, “
Two-Dimensional Biomass Combustion Modeling of CFB
,”
Fuel
,
87
(
8
), pp.
1453
1468
. 10.1016/j.fuel.2007.08.013
37.
Basu
,
P.
,
2013
,
Biomass Gasification, Pyrolysis and Torrefaction
, 2nd ed.,
Academic Press
,
London
.
You do not currently have access to this content.