Abstract

In response to the triple crisis of energy–environment–economy (3Es), the air-source heat pump (ASHP) system is considered to be one of the most feasible candidates to upgrade the traditional high emission heating solutions. In this paper, a novel thermal storage refrigerant-heated panel (RHP) is proposed for the ASHP heating system. Experiments were conducted in a climate chamber to test the heating and defrosting performance of the system, the thermal performance of the RHP, the system energy efficiency, and the system economic feasibility. The results show that the heat flux of the RHP is as high as 625.5 W/m2 at a condensation temperature of 40 °C and an outdoor air temperature of −7 °C. Meanwhile, the system is demonstrated to be reliable and competitive with efficient thermal stability in heating conditions and comfortable indoor thermal in defrosting conditions. The coefficient of performance (COP) ranges from 2.2 to 4.0 when the outdoor air temperature changes from −12 °C to 7 °C in the tests. Meanwhile, the initial capital cost and the total annual cost of the proposed system are 430 USD and 203.1 USD, respectively, which is competitive in the distracted heating systems.

References

References
1.
SyedAziz
,
U. R.
,
Yanpeng
,
C.
,
Nayyar
,
H. M.
,
Gordhan
,
D. W.
, and
Mohammad
,
N.
,
2018
, “
Energy–Environment–Economy Nexus in Pakistan: Lessons From a PAK-TIMES Model
,”
Energy Policy
,
126
(
3
), pp.
200
211
. 10.1016/j.enpol.2018.10.031
2.
Hsiao
,
T.
,
Chen
,
H. P.
, and
Li
,
Y. Y.
,
2015
, “
Competitive Dynamics of Energy, Environment, and Economy in the U.S.
,”
Energy
,
89
(
9
), pp.
449
460
.
3.
Downie
,
C
,
2020
, “
Strategies for Survival: The International Energy Agency's Response to a New World
,”
Energy Policy
,
141
(
6
), pp.
111452
. 10.1016/j.enpol.2020.111452
4.
Xu
,
C. C.
,
Li
,
S. H.
, and
Zhang
,
X. S.
,
2019
, “
Application of the CPMV Index to Evaluating Indoor Thermal Comfort in Winter: Case Study on an Office Building in Beijing
,”
Build. Environ.
,
162
(
9
), pp.
295
301
. 10.1016/j.buildenv.2019.106295
5.
Kousksou
,
T.
,
Allouhi
,
A.
,
Belattar
,
M.
,
Jamil
,
A.
,
Rhafiki
,
T. E.
, and
Zeraouli
,
Y.
,
2015
, “
Morocco’s Strategy for Energy Security and Low-Carbon Growth
,”
Energy
,
84
(
5
), pp.
98
105
. 10.1016/j.energy.2015.02.048
6.
Ghosh
,
S.
,
Devotta
,
S.
, and
Patwardhan
,
V. S.
,
1987
, “
The Economics of Heat Pump Systems for Simultaneous Heating and Cooling
,”
Heat Recovery Syst. CHP
,
7
(
2
), pp.
159
166
. 10.1016/0890-4332(87)90080-9
7.
Hans
,
L.
, and
Fritz
,
S.
,
1981
,
Heat Pump Technology
,
Butterworth & Co (Publishers) Ltd
,
London
, pp.
1
8
.
8.
Han
,
B. L.
,
Yan
,
G.
, and
Yu
,
J. L.
,
2019
, “
Refrigerant Migration During Startup of a Split Air Conditioner in Heating Mode
,”
Appl. Therm. Eng.
,
148
(
2
), pp.
1068
1073
. 10.1016/j.applthermaleng.2018.11.126
9.
Chen
,
H.
,
Li
,
R. B.
,
Liu
,
Y.
,
Liu
,
J.
, and
Wang
,
X.
,
2019
, “
Study of Indoor Thermal Environment and Stratified Air-Conditioning Load With Low-Sidewall Air Supply for Large Space Based on Block-Gebhart Model
,”
Build. Environ.
,
147
(
1
), pp.
495
505
. 10.1016/j.buildenv.2018.10.036
10.
Hu
,
B.
,
Wang
,
R. Z.
,
Xiao
,
B.
,
He
,
L.
,
Zhang
,
W.
, and
Zhang
,
S. H.
,
2019
, “
Performance Evaluation of Different Heating Terminals Used in Air Source Heat Pump System
,”
Int. J. Refrig.
,
98
(
2
), pp.
274
282
. 10.1016/j.ijrefrig.2018.10.014
11.
Asaee
,
S. R.
,
Ugursal
,
V. I.
, and
Beausoleil
,
M. I.
,
2017
, “
Techno-Economic Feasibility Evaluation of Air to Water Heat Pump Retrofit in the Canadian Housing Stock
,”
Appl. Therm. Eng.
,
111
(
1
), pp.
936
949
. 10.1016/j.applthermaleng.2016.09.117
12.
Lee
,
S. W.
,
Park
,
B. Y.
,
Kim
,
J.
, and
Kato
,
S.
,
2016
, “
Evaluation of Thermal Characteristics on a Multi-Sheet-Type Radiant Panel Heating System
,”
J. Build. Eng.
,
8
(
12
), pp.
48
57
. 10.1016/j.jobe.2016.09.006
13.
Anna
,
J.
, and
Werner
,
J.
,
2018
, “
Experimental and Numerical Investigation of Lightweight Floor Heating With Metallised Polyethylene Radiant Sheet
,”
Energy Build.
,
177
(
10
), pp.
23
32
. 10.1016/j.enbuild.2018.08.011
14.
Shao
,
S. L.
,
Zhang
,
H.
,
Jiang
,
L. F.
,
You
,
S. J.
, and
Zheng
,
W. D.
,
2019
, “
Numerical Investigation and Thermal Analysis of a Refrigerant-Heated Radiator Heating System Coupled With Air Source Heat Pump
,”
Energy Proc.
,
158
(
2
), pp.
2158
2163
. 10.1016/j.egypro.2019.01.614
15.
Xu
,
S. X.
,
Ding
,
R. C.
,
Niu
,
J. H.
, and
Ma
,
G. Y.
,
2018
, “
Investigation of Air-Source Heat Pump Using Heat Pipes as Heat Radiator
,”
Int. J. Refrig.
,
90
(
6
), pp.
91
98
. 10.1016/j.ijrefrig.2018.03.025
16.
Dong
,
J. K.
,
Zhang
,
L.
,
Deng
,
S. M.
,
Yang
,
B.
, and
Huang
,
S.
,
2018
, “
An Experimental Study on a Novel Radiant-Convective Heating System Based on Air Source Heat Pump
,”
Energy Build.
,
158
(
1
), pp.
812
821
. 10.1016/j.enbuild.2017.10.065
17.
Dong
,
J. K.
,
Deng
,
S. M.
,
Jiang
,
Y. Q.
,
Xia
,
L.
, and
Yao
,
Y.
,
2012
, “
An Experimental Study on Defrosting Heat Supplies and Energy Consumptions During a Reverse Cycle Defrost Operation for an Air Source Heat Pump
,”
Appl. Therm. Eng.
,
37
(
3
), pp.
380
387
. 10.1016/j.applthermaleng.2011.11.052
18.
Ministry of Housing and Urban-Rural Development of the People's Republic of China
,
2013
,
Test Methods for Thermal Performance of Radiant Cooling and Heating Unit (JG/T 403–2013)
,
Standards Press of China
,
Beijing
.
19.
Wang
,
J.
,
2009
,
Measuring Technique of Building Environment
,
Huazhong University of Science and Technology Press
,
Wuhan
, pp.
316
323
.
20.
Shao
,
S. L.
,
Zhang
,
H.
,
You
,
S. J.
,
Zheng
,
W. D.
, and
Jiang
,
L. F.
,
2019
, “
Thermal Performance Analysis of a New Refrigerant-Heated Radiator Coupled With Air-Source Heat Pump Heating System
,”
Appl. Energy
,
247
(
8
), pp.
78
88
. 10.1016/j.apenergy.2019.04.032
21.
Carlos
,
M. R.
,
Joaquín
,
N. E.
,
Adrián
,
M. B.
,
Francisco
,
M. B.
, and
Marta
,
A. A.
,
2019
, “
Experimental Exergy and Energy Analysis of a Novel High-Temperature Heat Pump With Scroll Compressor for Waste Heat Recovery
,”
Appl. Energy
,
253
(
11
), pp.
111
118
. 10.1016/j.apenergy.2019.113504
22.
Ji
,
W.
,
Cai
,
J. Y.
,
Ji
,
J.
, and
Huang
,
W. J.
,
2019
, “
Experimental Study of a Direct Expansion Solar-Assisted Heat Pump (DX-SAHP) With Finned-Tube Evaporator and Comparison With Conventional DX-SAHP
,”
Energy Build.
,
25
(
1
), pp.
632
641
. 10.1016/j.enbuild.2019.109632
23.
BSI Standards
,
1997
,
Radiators and Convectors—Part 2: Test Methods and Rating (EN 442-2-1997)
,
British Standards Institution
,
London
.
24.
Laouadi
,
A.
,
2004
, “
Development of a Radiant Heating and Cooling Model for Building Energy Simulation Software
,”
Build. Environ.
,
39
(
4
), pp.
421
431
. 10.1016/j.buildenv.2003.09.016
25.
Zhu
,
J. H.
,
Sun
,
Y. Y.
,
Wang
,
W.
,
Ge
,
Y. J.
,
Li
,
L. T.
, and
Liu
,
D. J.
,
2015
, “
A Novel Temperature-Humidity-Time Defrosting Control Method Based on a Frosting Map for Air-Source Heat Pumps
,”
Int. J. Refrig.
,
54
(
6
), pp.
45
54
. 10.1016/j.ijrefrig.2015.02.005
26.
Clara
,
V.
,
Filip
,
L.
,
Jan
,
V. I.
, and
Lieve
,
H.
,
2012
, “
Study of the Optimal Control Problem Formulation for Modulation Air-to-Water Heat Pump
,”
Energy Build.
,
45
(
10
), pp.
43
53
.
27.
Kelly
,
N. J.
, and
Cockroft
,
J.
,
2011
, “
Analysis of Retrofit Air Source Heat Pump Performance: Results From Detailed Simulations and Comparison to Field Trial Data
,”
Energy Build.
,
43
(
3
), pp.
239
245
. 10.1016/j.enbuild.2010.09.018
28.
Zhang
,
H.
,
Jiang
,
L. F.
,
Zheng
,
W. D.
,
You
,
S. J.
,
Jiang
,
T. T.
,
Shao
,
S. L.
, and
Zhu
,
X. M.
,
2019
, “
Experimental Study on a Novel Thermal Storage Refrigerant-Heated Radiator Coupled With Air Source Heat Pump Heating System
,”
Build. Environ.
,
164
(
10
), pp.
341
348
. 10.1016/j.buildenv.2019.106341
29.
Zhang
,
Y.
,
Zhu
,
C. G.
,
Zhang
,
H.
,
Zheng
,
W. D.
,
You
,
S. J.
, and
Zhen
,
Y. H.
,
2018
, “
Experimental Study of a Humidification-Dehumidification Desalination System With Heat Pump Unit
,”
Desalination
,
442
(
9
), pp.
108
117
. 10.1016/j.desal.2018.05.020
30.
Lars
,
J.
,
2015
, “
Evaluation of the Economic and Environmental Feasibility of Heat Pump Systems in Residential Buildings, With Varying Qualities of the Building Envelope
,”
Renew. Energy
,
76
(
4
), pp.
699
705
. 10.1016/j.renene.2014.11.037
31.
Wu
,
Z. X.
,
Zhang
,
Y. F.
, and
Sheng
,
Y.
,
2019
, “
Energy, Exergy, Economic(3E) Analysis and Multi-Objective Optimization of a Novel Dual Functional Integration System
,”
Energy Convers. Manage.
,
199
(
11
), pp.
162
171
. 10.1016/j.enconman.2019.111962
You do not currently have access to this content.