Abstract

The experimental analysis is arranged to evaluate the thermal hydraulic performance on nanofluid flow in helical screw insert with tube at a number of strips and different twist ratios in laminar flow regime. The single strip (SS) helical screw inserts are also compared with the double strip (DS) helical screw inserts. The heat transfer enhancement is achieved with nanofluid flow in double strip as compared with single strip helical screw insert at decreased values of twist ratio and increased values of Reynolds number. A maximum enhancement of 421% is found in the value of Nusselt number with double strip helical screw insert at twist ratio of 1.5 and low value of Reynolds number in the flow of nanofluid than water in plain tube. The common correlations of Nusselt number and friction factor are generated. The thermal performance factor (TPF) is achieved at a maximum value of 2.42 with double strip than single strip helical screw inserts at twist ratio of 2.5 and low value of Reynolds number. The present analysis shows suitability of the double strip helical screw insert to enable miniaturization of the heat exchangers. A compact heat exchanger decreases the size of thermal application such as solar water heater, solar power plants, electronic cooling systems, radiator, etc., which could save environment by pollution reduction with utilization of energy.

References

References
1.
Bergles
,
A. E.
,
1985
, “Techniques to Augment Heat Transfer,”
Handbook of Heat Transfer Application
, 3rd ed.,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
E.
Ganie
, eds.,
McGraw-Hill
,
New York
, pp.
11.1
11.60
.
2.
Bergles
,
A. E.
,
1988
, “
Some Perspectives on Enhanced Heat Transfer—Second-Generation Heat Transfer Technology
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1082
1096
. 10.1115/1.3250612
3.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2003
, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Adv. Heat Transfer
,
36
, pp.
183
266
. 10.1016/S0065-2717(02)80007-7
4.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress and Exposition
,
Argonne National Lab., Argonne, IL
,
Oct. 1
, vol.
66
, pp.
99
105
.
5.
Sharma
,
K. V.
,
Sundar
,
L. S.
, and
Sarma
,
P. K.
,
2009
, “
Estimation of Heat Transfer Coefficient and Friction Factor in the Transition Flow With Low Volume Concentration of Al2O3 Nanofluid Flowing in a Circular Tube and With Twisted Tape Insert
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
503
507
. 10.1016/j.icheatmasstransfer.2009.02.011
6.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Heat Transfer Enhancements of Low Volume Concentration Al2O3 Nanofluid and With Longitudinal Strip Inserts in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4280
4286
. 10.1016/j.ijheatmasstransfer.2010.05.056
7.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Turbulent Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube With Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1409
1416
. 10.1016/j.ijheatmasstransfer.2009.12.016
8.
Suresh
,
S.
,
Venkitaraj
,
K. P.
, and
Selvakumar
,
P.
,
2011
, “
Comparative Study on Thermal Performance of Helical Screw Tape Inserts in Laminar Flow Using Al2O3/Water and CuO/Water Nanofluids
,”
Superlattices Microstruct.
,
49
(
6
), pp.
608
622
. 10.1016/j.spmi.2011.03.012
9.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
A Comparison of Thermal Characteristics of Al2O3/Water and CuO/Water Nanofluids in Transition Flow Through a Straight Circular Duct Fitted With Helical Screw Tape Inserts
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
37
44
. 10.1016/j.expthermflusci.2012.01.004
10.
Mohammed
,
H. A.
,
Hasan
,
H. A.
, and
Wahid
,
M. A.
,
2013
, “
Heat Transfer Enhancement of Nanofluids in a Double Pipe Heat Exchanger With Louvered Strip Inserts
,”
Int. Commun. Heat Mass Transf.
,
40
(
1
), pp.
36
46
. 10.1016/j.icheatmasstransfer.2012.10.023
11.
Sekhar
,
Y. R.
,
Sharma
,
K. V.
,
Karupparaj
,
R. T.
, and
Chiranjeevi
,
C.
,
2013
, “
Heat Transfer Enhancement With Al2O3 Nanofluids and Twisted Tapes in a Pipe for Solar Thermal Applications
,”
Procedia Eng.
,
64
, pp.
1474
1484
. 10.1016/j.proeng.2013.09.229
12.
Azmi
,
W. H.
,
Sharma
,
K. V.
,
Sarma
,
P. K.
,
Mamat
,
R.
,
Anuar
,
S.
, and
Sundar
,
L. S.
,
2014
, “
Numerical Validation of Experimental Heat Transfer Coefficient With SiO2 Nanofluid Flowing in a Tube With Twisted Tape Inserts
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
296
306
. 10.1016/j.applthermaleng.2014.07.060
13.
Naik
,
M. T.
,
Fahad
,
S. S.
,
Sundar
,
L. S.
, and
Singh
,
M. K.
,
2014
, “
Comparative Study on Thermal Performance of Twisted Tape and Wire Coil Inserts in Turbulent Flow Using CuO/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
65
76
. 10.1016/j.expthermflusci.2014.04.006
14.
Abdolbaqi
,
M. K.
,
Azwadi
,
C. S. N.
, and
Mamat
,
R.
,
2014
, “
Heat Transfer Augmentation in the Straight Channel by Using Nanofluids
,”
Case Stud. Therm. Eng.
,
3
, pp.
59
67
. 10.1016/j.csite.2014.04.001
15.
Azmi
,
W. H.
,
Sharma
,
K. V.
,
Mamat
,
R.
, and
Anuar
,
S.
,
2014
, “
Turbulent Forced Convection Heat Transfer of Nanofluids With Twisted Tape Insert in a Plain Tube
,”
Energy Procedia
,
52
, pp.
296
307
. 10.1016/j.egypro.2014.07.081
16.
Ahmed
,
H. E.
,
Ahmed
,
M. I.
,
Yusoff
,
M. Z.
,
Hawlader
,
M. N. A.
, and
Al-ani
,
H.
,
2015
, “
Experimental Study of Heat Transfer Augmentation in Non-Circular Duct Using Combined Nanofluids and Vortex Generator
,”
Int. J. Heat Mass Transfer
,
90
, pp.
1197
1206
. 10.1016/j.ijheatmasstransfer.2015.07.065
17.
Safikhani
,
H.
, and
Abbasi
,
F.
,
2015
, “
Numerical Study of Nanofluid Flow in Flat Tubes Fitted With Multiple Twisted Tapes
,”
Adv. Powder Technol.
,
26
(
6
), pp.
1609
1617
. 10.1016/j.apt.2015.09.002
18.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2015
, “
Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts – a comparative study
,”
Chem. Eng. Process. Process Intensif.
,
88
, pp.
78
88
. 10.1016/j.cep.2014.12.005
19.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2015
, “
Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid—Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041009
. 10.1115/1.4027678
20.
Prasad
,
D.
,
Gupta
,
P. V.
,
Sreeramulu
,
A. V. S. S. K. S.
,
Sundar
,
M.
,
Singh
,
L. S.
,
Sousa
,
M. K.
, and
M
,
A. C.
,
2015
, “
Experimental Study of Heat Transfer and Friction Factor of Al2O3 Nanofluid in U-Tube Heat Exchanger With Helical Tape Inserts
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
141
150
. 10.1016/j.expthermflusci.2014.12.006
21.
Chougule
,
S. S.
,
Nirgude
,
V. V.
,
Gharge
,
P. D.
,
Modak
,
M.
, and
Sahu
,
S. K.
,
2016
, “
Heat Transfer Enhancements of Low Volume Concentration CNT/Water Nanofluid and Wire Coil Inserts in a Circular Tube
,”
Energy Procedia
,
90
, pp.
552
558
. 10.1016/j.egypro.2016.11.223
22.
Sundar
,
L. S.
,
Otero-Irurueta
,
G.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2016
, “
Heat Transfer and Friction Factor of Multi-Walled Carbon Nanotubes–Fe3O4 Nanocomposite Nanofluids Flow in a Tube With/Without Longitudinal Strip Inserts
,”
Int. J. Heat Mass Transfer
,
100
, pp.
691
703
. 10.1016/j.ijheatmasstransfer.2016.04.065
23.
Zheng
,
L.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2017
, “
Numerical Investigation on Heat Transfer Performance and Flow Characteristics in Circular Tubes With Dimpled Twisted Tapes Using Al2O3-Water Nanofluid
,”
Int. J. Heat Mass Transf.
,
111
, pp.
962
981
. 10.1016/j.ijheatmasstransfer.2017.04.062
24.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2017
, “
Comparative Study on Heat Transfer Enhancement of Low Volume Concentration of Al2O3–Water and Carbon Nanotube—Water Nanofluids in Laminar Regime Using Helical Screw Tape Inserts
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
4
), p.
040904
. 10.1115/1.4027913
25.
Sun
,
B.
,
Yang
,
A.
, and
Yang
,
D.
,
2017
, “
Experimental Study on the Heat Transfer and Flow Characteristics of Nanofluids in the Built-in Twisted Belt External Thread Tubes
,”
Int. J. Heat Mass Transf.
,
107
, pp.
712
722
. 10.1016/j.ijheatmasstransfer.2016.11.084
26.
Chougule
,
S. S.
,
Nirgude
,
V. V.
, and
Sahu
,
S. K.
,
2017
, “
Experimental Study on Laminar Forced Convection of Al2O3/Water and Multiwall Carbon Nanotubes/Water Nanofluid of Varied Particle Concentration With Helical Twisted Tape Inserts in Pipe Flow
,”
Heat Transf. Eng.
,
39
(
9
), pp.
806
818
. 10.1080/01457632.2017.1341235
27.
Javaherdeh
,
K.
,
Vaisi
,
A.
,
Moosavi
,
R.
, and
Esmaeilpour
,
M.
,
2017
, “
Experimental and Numerical Investigations on Louvered Fin-and-Tube Heat Exchanger With Variable Geometrical Parameters
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
024501
. 10.1115/1.4035449
28.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
358
375
. 10.1016/j.rser.2018.03.091
29.
Sheikholeslami
,
M.
,
Jafaryar
,
M.
, and
Li
,
Z.
,
2018
, “
Nanofluid Turbulent Convective Flow in a Circular Duct With Helical Turbulators Considering CuO Nanoparticles
,”
Int. J. Heat Mass Transf.
,
124
, pp.
980
989
. 10.1016/j.ijheatmasstransfer.2018.04.022
30.
Malekpour
,
A.
,
Karimi
,
N.
, and
Mehdizadeh
,
A.
,
2018
, “
Magnetohydrodynamics, Natural Convection, and Entropy Generation of CuO–Water Nanofluid in an I-Shape Enclosure—A Numerical Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061016
. 10.1115/1.4041267
31.
Zhou
,
X.
,
Jiang
,
Y.
,
Li
,
X.
,
Cheng
,
K.
,
Huai
,
X.
, and
Zhang
,
X.
,
2019
, “
Numerical Investigation of Heat Transfer Enhancement and Entropy Generation of Natural Convection in a Cavity Containing Nano Liquid-Metal Fluid
,”
Int. Commun. Heat Mass Transf.
,
106
, pp.
46
54
. 10.1016/j.icheatmasstransfer.2019.05.003
32.
Jiang
,
Y.
,
Zhou
,
X.
, and
Wang
,
Y.
,
2019
, “
Effects of Nanoparticle Shapes on Heat and Mass Transfer of Nanofluid Thermocapillary Convection Around a Gas Bubble
,”
Microgravity Sci. Technol.
, pp.
1
11
,
in press
10.1007/s12217-019-09757-z.
33.
Zhou
,
X.
,
Jiang
,
Y.
,
Hou
,
Y.
, and
Du
,
M.
,
2019
, “
Thermocapillary Convection Instability in Annular Two-Layer System Under Various Gravity Levels
,”
Microgravity Sci. Technol.
,
31
(
5
), pp.
641
648
. 10.1007/s12217-019-09742-6
34.
Abdelmagied
,
M.
,
2019
, “
Numerical Study of Thermofluid Characteristics of a Double Spirally Coiled Tube Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041008
. 10.1115/1.4043849
35.
Jiang
,
Y.
, and
Zhou
,
X.
,
2019
, “
Heat Transfer and Entropy Generation Analysis of Nanofluids Thermocapillary Convection Around a Bubble in a Cavity
,”
Int. Commun. Heat Mass Transf.
,
105
, pp.
37
45
. 10.1016/j.icheatmasstransfer.2019.03.013
36.
Jiang
,
Y.
,
Zhou
,
X.
, and
Wang
,
Y.
,
2020
, “
Comprehensive Heat Transfer Performance Analysis of Nanofluid Mixed Forced and Thermocapillary Convection Around a Gas Bubble in Minichannel
,”
Int. Commun. Heat Mass Transf.
,
110
, pp.
104386
. 10.1016/j.icheatmasstransfer.2019.104386
37.
Alhendal
,
Y.
,
Gomaa
,
A.
, and
Abdelmagied
,
M.
,
2020
, “
Combined Enhancement Techniques on Double Tube Heat Exchanger Using Nanofluid and Helicoid Tube Shape
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051011
. 10.1115/1.4046009
38.
Ramu
,
N.
, and
Ghoshdastidar
,
P. S.
,
2020
, “
Computer Simulation of Mixed Convection of Alumina-Deionized Water Nanofluid Over Four In-Line Electronic Chips Embedded in One Wall of a Vertical Rectangular Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041013
. 10.1115/1.4045696
39.
Deymi-Dashtebayaz
,
M.
,
Akhoundi
,
M.
,
Ebrahimi-Moghadam
,
A.
,
Arabkoohsar
,
A.
,
Jabari Moghadam
,
A.
, and
Farzaneh-Gord
,
M.
,
2020
, “
Thermo-Hydraulic Analysis and Optimization of CuO/Water Nanofluid Inside Helically Dimpled Heat Exchangers
,”
J. Therm. Anal. Calorim.
, pp.
1
16
,
in press
10.1007/s10973-020-09398-0.
40.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf.
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
41.
Maxwell
,
J. C.
,
1954
,
Treatise on Electricity and Magnetism
,
Dover
,
New York
.
42.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
. 10.1016/S0017-9310(99)00369-5
43.
Einstein
,
A.
, and
Cowper
,
A. D.
,
1956
,
Investigation on the Theory of Brownian Motion
, First,
Dover Publications
,
USA
.
44.
Kline
,
J. S.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
45.
Shah
,
R. K.
,
1975
, “
Thermal Entry Length Solutions for the Circular Tube and Parallel Plates
,”
Third National Heat Mass Transfer Conference, Indian Institute of Technology
,
Bombay, India
,
Dec. 27
, vol.
1
, pp.
11
75
.
You do not currently have access to this content.