Abstract

Two Semi-Implicit-Method for Pressure-Linked-Equations (SIMPLE) techniques have been performed to solve the dimensionless equations governing a dusty hybrid nanofluid flow in wavy enclosures contain a volumetric heat source. These techniques are applied to evaluate the pressure terms for both the hybrid nanofluid and the dusty particles based on the control volume solver. Two systems of equations are proposed to simulate the hybrid nanofluid phase and the dusty particles phase. In addition, a body-fitted method is applied to map the irregular domain into a rectangular domain, and an inverse map technique is used to present the obtained data inside the given wavy domain. The hybrid mixture, here, is consisting of water as a base fluid, and the nanoparticles are Al2O3 and Cu. The controlling parameters are the Rayleigh numbers RaE and Ral, the ratio of the densities of the mixture Ds, the dusty parameter αs, and the total nanoparticles volume fraction. The results revealed that the absolute values of the stream function are reduced by 54.5% when the heating modes are switched from (Ral/RaE) < 1 to (Ral /RaE) > 1. Also, the average Nusselt is enhanced by 5.2% at a = 0.9, 6.74% at a = 0.95, and 11.36% at a = 1.1 when the nanoparticles volume fraction is increased from 1% to 5%.

References

References
1.
Rudinger
,
G.
,
1980
, “Introduction to Two-Phase Flow,”
Fundamentals of Gas Particle Flow
,
G
.
Rudinger
, ed.,
Elsevier
,
New York
, pp.
1
6
.
2.
Farbar
,
L.
, and
Morley
,
M.
,
1957
, “
Heat Transfer to Flowing Gas–Solids Mixtures in a Circular Tube
,”
Ind. Eng. Chem.
,
49
(
7
), pp.
1143
1150
. 10.1021/ie50571a038
3.
Begum
,
N.
,
Siddiqa
,
S.
,
Sulaiman
,
M.
,
Islam
,
S.
,
Hossain
,
M. A.
, and
Gorla
,
R. S. R.
,
2017
, “
Numerical Solutions for Gyrotactic Bioconvection of Dusty Nanofluid Along a Vertical Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
113
, pp.
229
236
. 10.1016/j.ijheatmasstransfer.2017.05.071
4.
Siddiqa
,
S.
,
Begum
,
N.
,
Hossain
,
M. A.
,
Gorla
,
R. S. R.
, and
Al-Rashed
,
A. A. A. A.
,
2018
, “
Two-Phase Natural Convection Dusty Nanofluid Flow
,”
Int. J. Heat Mass Transfer
,
118
, pp.
66
74
. 10.1016/j.ijheatmasstransfer.2017.10.067
5.
Gireesha
,
B. J.
,
Mahanthesh
,
B.
,
Thammanna
,
G. T.
, and
Sampathkumar
,
P. B.
,
2018
, “
Hall Effects on Dusty Nanofluid Two-Phase Transient Flow Past a Stretching Sheet Using KVL Model
,”
J. Mol. Liq.
,
256
, pp.
139
147
. 10.1016/j.molliq.2018.01.186
6.
Mahmud
,
S.
,
Das
,
P. K.
,
Hyder
,
N.
, and
Sadrul Islam
,
A. K. M.
,
2002
, “
Free Convection in an Enclosure With Vertical Wavy Walls
,”
Int. J. Therm. Sci.
,
41
(
5
), pp.
440
446
. 10.1016/S1290-0729(02)01336-4
7.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2007
, “
Visualizing Energy Flows Through Energy Streamlines and Pathlines
,”
Int. J. Heat Mass Transfer
,
50
(
19
), pp.
3990
4002
. 10.1016/j.ijheatmasstransfer.2007.01.032
8.
Mahmud
,
S.
, and
Islam
,
A. K. M. S.
,
2003
, “
Laminar Free Convection and Entropy Generation Inside an Inclined Wavy Enclosure
,”
Int. J. Therm. Sci.
,
42
(
11
), pp.
1003
1012
. 10.1016/S1290-0729(03)00076-0
9.
Sultana
,
Z.
, and
Hyder
,
M. N.
,
2007
, “
Non-Darcy Free Convection Inside a Wavy Enclosure
,”
Int. Commun. Heat Mass Transfer
,
34
(
2
), pp.
136
146
. 10.1016/j.icheatmasstransfer.2006.10.007
10.
Das
,
P. K.
, and
Mahmud
,
S.
,
2003
, “
Numerical Investigation of Natural Convection Inside a Wavy Enclosure
,”
Int. J. Therm. Sci.
,
42
(
4
), pp.
397
406
. 10.1016/S1290-0729(02)00040-6
11.
Ahmed
,
S. E.
, and
Rashed
,
Z. Z.
,
2019
, “
MHD Natural Convection in a Heat Generating Porous Medium-Filled Wavy Enclosures Using Buongiorno's Nanofluid Model
,”
Case Studies Thermal Eng.
,
14
, p.
100430
. 10.1016/j.csite.2019.100430
12.
Biswal
,
P.
, and
Basak
,
T.
,
2018
, “
Investigation on Thermal Efficiency via Entropy Generation Analysis Within Cavities With Curved Walls Subjected to Differential/Rayleigh-Benard Heating
,”
Mater. Today Proc.
,
5
(
11, Pt. 2
), pp.
23107
23118
. 10.1016/j.matpr.2018.11.041
13.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2004
, “
Free Convection and Entropy Generation Inside a Vertical Inphase Wavy Cavity
,”
Int. Commun. Heat Mass Transfer
,
31
(
4
), pp.
455
466
. 10.1016/S0735-1933(04)00027-2
14.
Mansour
,
M. A.
, and
Bakier
,
M. A. Y.
,
2013
, “
Free Convection Heat Transfer in Complex-Wavy-Wall Enclosed Cavity Filled With Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
108
115
. 10.1016/j.icheatmasstransfer.2013.02.015
15.
Mansour
,
M. A.
,
El-Aziz
,
M. M. A.
,
Mohamed
,
R. A.
, and
Ahmed
,
S. E.
,
2011
, “
Numerical Simulation of Natural Convection in Wavy Porous Cavities Under the Influence of Thermal Radiation Using a Thermal Non-Equilibrium Model
,”
Transport Porous Media
,
86
(
2
), pp.
585
600
. 10.1007/s11242-010-9641-5
16.
Oztop
,
H. F.
,
Abu-Nada
,
E.
,
Varol
,
Y.
, and
Chamkha
,
A.
,
2011
, “
Natural Convection in Wavy Enclosures With Volumetric Heat Sources
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
502
514
. 10.1016/j.ijthermalsci.2010.10.015
17.
Job
,
V. M.
,
Gunakala
,
S. R.
,
Rushi Kumar
,
B.
, and
Sivaraj
,
R.
,
2017
, “
Time-Dependent Hydromagnetic Free Convection Nanofluid Flows Within a Wavy Trapezoidal Enclosure
,”
Appl. Therm. Eng.
,
115
, pp.
363
377
. 10.1016/j.applthermaleng.2016.12.084
18.
Ashorynejad
,
H. R.
, and
Shahriari
,
A.
,
2018
, “
MHD Natural Convection of Hybrid Nanofluid in an Open Wavy Cavity
,”
Results Phys.
,
9
, pp.
440
455
. 10.1016/j.rinp.2018.02.045
19.
Raizah
,
Z. A. S.
,
2019
, “
Natural Convection of Dusty Hybrid Nanofluids in an Enclosure Including Two Oriented Heated Fins
,”
Appl. Sci.
,
9
(
13
), p.
2673
. 10.3390/app9132673
20.
Babar
,
H.
, and
Ali
,
H. M.
,
2019
, “
Towards Hybrid Nanofluids: Preparation, Thermophysical Properties, Applications, and Challenges
,”
J. Mol. Liq.
,
281
, pp.
598
633
. 10.1016/j.molliq.2019.02.102
21.
Kumar
,
V.
, and
Sarkar
,
J.
,
2019
, “
Numerical and Experimental Investigations on Heat Transfer and Pressure Drop Characteristics of Al2O3–TiO2 Hybrid Nanofluid in Minichannel Heat Sink With Different Mixture Ratio
,”
Powder Technol.
,
345
, pp.
717
727
. 10.1016/j.powtec.2019.01.061
22.
Waini
,
I.
,
Ishak
,
A.
, and
Pop
,
I.
,
2019
, “
Unsteady Flow and Heat Transfer Past a Stretching/Shrinking Sheet in a Hybrid Nanofluid
,”
Int. J. Heat Mass Transfer
,
136
, pp.
288
297
. 10.1016/j.ijheatmasstransfer.2019.02.101
23.
Izadi
,
M.
,
Mohebbi
,
R.
,
Karimi
,
D.
, and
Sheremet
,
M. A.
,
2018
, “
Numerical Simulation of Natural Convection Heat Transfer Inside a ┴ Shaped Cavity Filled by a MWCNT-Fe3O4/Water Hybrid Nanofluids Using LBM
,”
Chemical Eng. Processing—Process Intensif.
,
125
, pp.
56
66
. 10.1016/j.cep.2018.01.004
24.
Mehryan
,
S. A. M.
,
Kashkooli
,
F. M.
,
Ghalambaz
,
M.
, and
Chamkha
,
A. J.
,
2017
, “
Free Convection of Hybrid Al2O3-Cu Water Nanofluid in a Differentially Heated Porous Cavity
,”
Adv. Powder Technol.
,
28
(
9
), pp.
2295
2305
. 10.1016/j.apt.2017.06.011
25.
Sun
,
B.
,
Zhang
,
Y.
,
Yang
,
D.
, and
Li
,
H.
,
2019
, “
Experimental Study on Heat Transfer Characteristics of Hybrid Nanofluid Impinging Jets
,”
Appl. Therm. Eng.
,
151
, pp.
556
566
. 10.1016/j.applthermaleng.2019.01.111
26.
Hussain
,
S.
,
Ahmed
,
S. E.
, and
Akbar
,
T.
,
2017
, “
Entropy Generation Analysis in MHD Mixed Convection of Hybrid Nanofluid in an Open Cavity With a Horizontal Channel Containing an Adiabatic Obstacle
,”
Int. J. Heat Mass Transfer
,
114
, pp.
1054
1066
. 10.1016/j.ijheatmasstransfer.2017.06.135
27.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
28.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
. 10.1115/1.2960953
29.
Krane
,
R. J.
, and
Jessee
,
J.
,
1983
, “
Some Detailed Field Measurements for a Natural Convection Flow in a Vertical Square Enclosure
,”
Proceedings of the First ASME-JSME Thermal Engineering Joint Conference
, Honolulu, HI, Mar. 20-24, Vol.
1
, pp.
323
329
.
You do not currently have access to this content.