Abstract

This work focuses on macroscale modeling of solid–liquid phase change in metal foam/paraffin composite (MFPC), addressing the treatment of paraffin density (under distinct paraffin filling conditions in metal foam), thermal dispersion effect, and influence of thermal diffusion-dominated interstitial heat transfer. To this end, a macroscale thermal non-equilibrium model for melting in MFPC with fluid convection is developed by employing the enthalpy-porosity technique and volume-averaging approach. Meanwhile, visualized experiments on the melting of the MFPC sample are carried out to validate the modeling results. Comparing the numerical modeling and experimental visualization results, it is found that for MFPC with an initially saturated filling condition in metal foam using solid paraffin, the varied paraffin density is preferred to be employed for developing accurate phase change model. However, for MFPC that can be just filled with liquid paraffin after melting (i.e., non-saturated filling condition using solid paraffin), the Boussinesq approximation is preferred to achieve satisfying phase change simulation. Thermal dispersion effect in MFPC is proved to be negligible, which should not be overvalued to avoid inducing physical distortions of heat transfer and fluid flow. Consideration of diffusion-dominated interstitial heat transfer in the thermal non-equilibrium model is vital to accurately capture phase interface evolutions as well as to reasonably simulate the mushy zone of paraffin, and the model only incorporating the convection-induced interstitial heat transfer will predict quite inaccurate phase change process. This study can provide useful guidance in macroscale modeling of phase change in MFPC associated with the thermal energy storage applications.

References

References
1.
Banhart
,
J.
,
2001
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
. 10.1016/S0079-6425(00)00002-5
2.
Valizade
,
M.
,
Heyhat
,
M. M.
, and
Maerefat
,
M.
,
2020
, “
Experimental Study of the Thermal Behavior of Direct Absorption Parabolic Trough Collector by Applying Copper Metal Foam as Volumetric Solar Absorption
,”
Renewable Energy
,
145
, pp.
261
269
. 10.1016/j.renene.2019.05.112
3.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Coupled Radiation and Flow Modeling in Ceramic Foam Volumetric Solar Air Receivers
,”
Sol. Energy
,
85
(
9
), pp.
2374
2385
. 10.1016/j.solener.2011.06.030
4.
Andreozzi
,
A.
,
Bianco
,
N.
,
Iasiello
,
M.
, and
Naso
,
V.
,
2020
, “
Thermo-Fluid-Dynamics of a Ceramic Foam Solar Receiver: A Parametric Analysis
,”
Heat Transfer Eng.
,
41
(
12
), pp.
1085
1099
. 10.1080/01457632.2019.1600876
5.
Chen
,
X.
,
Xia
,
X.-L.
,
Meng
,
X.-L.
, and
Dong
,
X.-H.
,
2015
, “
Thermal Performance Analysis on a Volumetric Solar Receiver With Double-Layer Ceramic Foam
,”
Energy Convers. Manage.
,
97
, pp.
282
289
. 10.1016/j.enconman.2015.03.066
6.
Andreozzi
,
A.
,
Bianco
,
N.
,
Iasiello
,
M.
, and
Naso
,
V.
,
2017
, “
Numerical Study of Metal Foam Heat Sinks Under Uniform Impinging Flow
,”
J. Physics: Conference Series
,
796
, p.
012002
. 10.1088/1742-6596/796/1/012002
7.
Degroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
. 10.1115/1.3103934
8.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
. 10.1016/j.ijheatmasstransfer.2014.05.053
9.
Sardari
,
P. T.
,
Giddings
,
D.
,
Grant
,
D.
,
Gillott
,
M.
, and
Walker
,
G. S.
,
2020
, “
Discharge of a Composite Metal Foam/Phase Change Material to Air Heat Exchanger for a Domestic Thermal Storage Unit
,”
Renewable Energy
,
148
, pp.
987
1001
. 10.1016/j.renene.2019.10.084
10.
Yang
,
X.
,
Yu
,
J.
,
Xiao
,
T.
,
Hu
,
Z.
, and
He
,
Y.-L.
,
2020
, “
Design and Operating Evaluation of a Finned Shell-and-Tube Thermal Energy Storage Unit Filled With Metal Foam
,”
Appl. Energy
,
261
, p.
114385
. 10.1016/j.apenergy.2019.114385
11.
Abishek
,
S.
,
King
,
A. J. C.
,
Nadim
,
N.
, and
Mullins
,
B. J.
,
2018
, “
Effect of Microstructure on Melting in Metal-Foam/Paraffin Composite Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
127
, pp.
135
144
. 10.1016/j.ijheatmasstransfer.2018.07.054
12.
Pourakabar
,
A.
, and
Rabienataj Darzi
,
A. A.
,
2019
, “
Enhancement of Phase Change Rate of PCM in Cylindrical Thermal Energy Storage
,”
Appl. Therm. Eng.
,
150
, pp.
132
142
. 10.1016/j.applthermaleng.2019.01.009
13.
Nedjem
,
K.
,
Teggar
,
M.
,
Ismail
,
K. A. R.
, and
Nehari
,
D.
,
2020
, “
Numerical Investigation of Charging and Discharging Processes of a Shell and Tube Nano-enhanced Latent Thermal Storage Unit
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021021
. 10.1115/1.4046062
14.
Xu
,
Y.
,
Zhu
,
Z.
,
Li
,
S.
, and
Wang
,
J.
,
2020
, “
Numerical Investigation on Melting Process of a Phase Change Material Under Supergravity
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021014
. 10.1115/1.4047524
15.
Buonomo
,
B.
,
Celik
,
H.
,
Ercole
,
D.
,
Manca
,
O.
, and
Mobedi
,
M.
,
2019
, “
Numerical Study on Latent Thermal Energy Storage Systems With Aluminum Foam in Local Thermal Equilibrium
,”
Appl. Therm. Eng.
,
159
, p.
113980
. 10.1016/j.applthermaleng.2019.113980
16.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Analysis of Solid–Liquid Phase Change Under Pulsed Heating
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
395
400
. 10.1115/1.2430728
17.
Feng
,
S.
,
Shi
,
M.
,
Li
,
Y.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
. 10.1016/j.ijheatmasstransfer.2015.06.088
18.
Chakraborty
,
P. R.
,
2017
, “
Enthalpy Porosity Model for Melting and Solidification of Pure-Substances With Large Difference in Phase Specific Heats
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
183
189
. 10.1016/j.icheatmasstransfer.2016.12.023
19.
Kaviany
,
M.
,
1991
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
Berlin
.
20.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
. 10.1115/1.2010494
21.
Li
,
W.
,
Qu
,
Z.
,
He
,
Y.
, and
Tao
,
W.
,
2012
, “
Experimental and Numerical Studies on Melting Phase Change Heat Transfer in Open-Cell Metallic Foams Filled With Paraffin
,”
Appl. Therm. Eng.
,
37
, pp.
1
9
. 10.1016/j.applthermaleng.2011.11.001
22.
Tian
,
Y.
, and
Zhao
,
C.-Y.
,
2011
, “
A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals
,”
Energy
,
36
(
9
), pp.
5539
5546
. 10.1016/j.energy.2011.07.019
23.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modeling for Solid-Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
. 10.1016/j.apenergy.2013.02.022
24.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Computational Studies on Metal Foam and Heat Pipe Enhanced Latent Thermal Energy Storage
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051503
. 10.1115/1.4026040
25.
Libeer
,
W.
,
Ramos
,
F.
,
Newton
,
C.
,
Alipanahrostami
,
M.
,
Depcik
,
C.
, and
Li
,
X.
,
2016
, “
Two-Phase Heat and Mass Transfer of Phase Change Materials in Thermal Management Systems
,”
Int. J. Heat Mass Transfer
,
100
, pp.
215
223
. 10.1016/j.ijheatmasstransfer.2016.04.076
26.
Yang
,
J.
,
Yang
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2015
, “
Numerical Analysis on Thermal Behavior of Solid–Liquid Phase Change Within Copper Foam With Varying Porosity
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1008
1018
. 10.1016/j.ijheatmasstransfer.2015.01.088
27.
Chen
,
Z.
,
Gao
,
D.
, and
Shi
,
J.
,
2014
, “
Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale
,”
Int. J. Heat Mass Transfer
,
72
, pp.
646
655
. 10.1016/j.ijheatmasstransfer.2014.01.003
28.
Wang
,
C.
,
Lin
,
T.
,
Li
,
N.
, and
Zheng
,
H.
,
2016
, “
Heat Transfer Enhancement of Phase Change Composite Material: Copper Foam/Paraffin
,”
Renewable Energy
,
96
, pp.
960
965
. 10.1016/j.renene.2016.04.039
29.
Gulfam
,
R.
,
Zhang
,
P.
, and
Meng
,
Z.
,
2019
, “
Advanced Thermal Systems Driven by Paraffin-Based Phase Change Materials—A Review
,”
Appl. Energy
,
238
, pp.
582
611
. 10.1016/j.apenergy.2019.01.114
30.
Georgiadis
,
J. G.
, and
Catton
,
I.
,
1988
, “
Dispersion in Cellular Thermal Convection in Porous Layers
,”
Int. J. Heat Mass Transfer
,
31
(
5
), pp.
1081
1091
. 10.1016/0017-9310(88)90096-8
31.
Yao
,
Y.
, and
Wu
,
H.
,
2019
, “
Pore-scale Simulation of Melting Process of Paraffin With Volume Change in High Porosity Open-Cell Metal Foam
,”
Int. J. Therm. Sci.
,
138
, pp.
322
340
. 10.1016/j.ijthermalsci.2018.12.052
32.
Zukauskas
,
A. A.
,
1987
, “
Heat Transfer From Tubes in Cross Flow
,”
Adv. Heat Transfer
,
18
, pp.
87
159
. 10.1016/S0065-2717(08)70118-7
33.
Calmidi
,
V.
, and
Mahajan
,
R.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
. 10.1115/1.1287793
34.
Elbahjaoui
,
R.
, and
El Qarnia
,
H.
,
2017
, “
Thermal Analysis of Nanoparticle-Enhanced Phase Change Material Solidification in a Rectangular Latent Heat Storage Unit Including Natural Convection
,”
Energy Buildings
,
153
, pp.
1
17
. 10.1016/j.enbuild.2017.08.003
35.
Younsi
,
Z.
, and
Naji
,
H.
,
2017
, “
A Numerical Investigation of Melting Phase Change Process via the Enthalpy-Porosity Approach: Application to Hydrated Salts
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
12
24
. 10.1016/j.icheatmasstransfer.2017.05.012
36.
Kheirabadi
,
A. C.
, and
Groulx
,
D.
,
2015
, “
Simulating Phase Change Heat Transfer Using Comsol and Fluent: Effect of the Mushy-Zone Constant
,”
Comput. Therm. Sci.: An Int. J.
,
7
(
5-6
), pp.
427
440
. 10.1615/ComputThermalScien.2016014279
37.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
. 10.1016/0009-2509(94)00170-7
38.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,”
PhD dissertation
,
University of Colorado
,
Boulder, CO
.
39.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2015
, “
A New Prediction Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
97
, pp.
56
67
. 10.1016/j.ijthermalsci.2015.06.008
40.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2019
, “
Thermal Conduction in Open-Cell Metal Foams: Anisotropy and Representative Volume Element
,”
Int. J. Therm. Sci.
,
137
, pp.
399
409
. 10.1016/j.ijthermalsci.2018.12.002
41.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2017
, “
Direct Simulation of Interstitial Heat Transfer Coefficient Between Paraffin and High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
140
(
3
), p.
032601
. 10.1115/1.4038006
42.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2020
, “
Anisotropic Convective Heat Transfer in Open-Cell Metal Foams: Assessment and Correlations
,”
Int. J. Heat Mass Transfer
,
154
, p.
119682
. 10.1016/j.ijheatmasstransfer.2020.119682
43.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimise Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7
), pp.
1527
1537
. 10.1016/j.ijheatmasstransfer.2010.11.037
44.
Gopala
,
V. R.
, and
van Wachem
,
B. G. M.
,
2008
, “
Volume of Fluid Methods for Immiscible-Fluid and Free-Surface Flows
,”
Chem. Eng. J.
,
141
(
1–3
), pp.
204
221
. 10.1016/j.cej.2007.12.035
You do not currently have access to this content.