Abstract

Through a thermal-state model experiment, the effects of air channels in five layout patterns on heat transfer and ventilation characteristics of the wet cooling tower were investigated under different crosswind velocities and circulating water flowrates in this paper. The dimensions and operating conditions of the model tower were obtained by scaling down those of the prototype according to similarity principles. Experimental results manifest that all patterns of air channels can not only enhance the heat transfer and ventilation performance but also decrease the variation amplitudes of performance parameters versus crosswind velocity. Under most crosswind velocities, the positive effects of air channels are more remarkable under 0.000065 m3/s than those under 0.0001 m3/s. Compared with the original tower performance, the effect of the P4 and P5 pattern is superior to that of the P2 and P1 pattern. Besides, the P3 pattern of air channels with a length of 0.27 times the tower bottom diameter and a number of 8 can provide an optimal tower performance, which is recommended in engineering applications.

References

1.
Lemouari
,
M.
,
Boumaza
,
M.
, and
Mujtaba
,
I. M.
,
2007
, “
Thermal Performances Investigation of a Wet Cooling Tower
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
902
909
.
2.
Ning
,
T.
,
Chong
,
D. T.
,
Jia
,
M. X.
,
Wang
,
J. S.
, and
Yan
,
J. J.
,
2015
, “
Experimental Investigation on the Performance of Wet Cooling Towers With Defects in Power Plants
,”
Appl. Therm. Eng.
,
78
(
3
), pp.
228
235
.
3.
Li
,
X. X.
,
Gurgenci
,
H.
,
Guan
,
Z. Q.
,
Wang
,
X. R.
, and
Xia
,
L.
,
2019
, “
A Review of the Crosswind Effect on the Natural Draft Cooling Towers
,”
Appl. Therm. Eng.
,
150
(
3
), pp.
250
270
.
4.
Wang
,
K.
,
Sun
,
F. Z.
,
Zhao
,
Y. B.
,
Gao
,
M.
, and
Ruan
,
L.
,
2010
, “
Experimental Research of the Guiding Channels Effect on the Thermal Performance of Wet Cooling Towers Subjected to Crosswinds-Air Guiding Effect on Cooling Tower
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
533
538
.
5.
Chen
,
Y. L.
,
Sun
,
F. Z.
,
Wang
,
H. G.
,
Mu
,
N. S.
, and
Gao
,
M.
,
2011
, “
Experimental Research of the Cross Walls Effect on the Thermal Performance of Wet Cooling Towers Under Crosswind Conditions
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4007
4013
.
6.
Al-Waked
,
R.
, and
Behnia
,
M.
,
2007
, “
Enhancing Performance of Wet Cooling Towers
,”
Energy Convers. Manag.
,
48
(
10
), pp.
2638
2648
.
7.
Chen
,
G.
,
Zhao
,
Y.
,
Li
,
W.
, and
Ge
,
W.
,
2019
, “
The Efficiency of High-Level Water Collecting Cooling Tower With the Installation of Cross Wall Affect by the Evolution of Aerodynamic Field
,”
Appl. Therm. Eng.
,
161
(
10
), p.
114181
.
8.
Kashani
,
M. M. H.
, and
Dobrego
,
K. V.
,
2016
, “
Effect of Inlet Window Deflectors on the Performance of a Natural-Draft Cooling Tower Subjected to Crosswinds
,”
Heat Transfer Eng.
,
37
(
15
), pp.
1293
1301
.
9.
Zhou
,
Y.
,
Gao
,
M.
,
Long
,
G. Q.
,
Zhang
,
Z. Q.
,
Dang
,
Z. G.
,
He
,
S. Y.
, and
Sun
,
F. Z.
,
2019
, “
Experimental Study Regarding the Effects of Forced Ventilation on the Thermal Performance for Super-Large Natural Draft Wet Cooling Towers
,”
Appl. Therm. Eng.
,
155
(
6
), pp.
40
48
.
10.
Lu
,
Y. S.
,
Guan
,
Z. Q.
,
Gurgenci
,
H.
,
Alkhedhair
,
A.
, and
He
,
S. Y.
,
2016
, “
Experimental Investigation Into the Positive Effects of a Tri-Blade-Like Windbreak Wall on Small Size Natural Draft Dry Cooling Towers
,”
Appl. Therm. Eng.
,
105
(
7
), pp.
1000
1012
.
11.
Wu
,
T.
,
Ge
,
Z. H.
,
Yang
,
L. J.
, and
Du
,
X. Z.
,
2019
, “
Flow Deflectors to Release the Negative Defect of Natural Wind on Large Scale Dry Cooling Tower
,”
Int. J. Heat Mass Transfer
,
128
(
1
), pp.
248
269
.
12.
Liu
,
Q. L.
,
Xia
,
L.
,
Hu
,
M. Q.
,
Li
,
X. X.
,
Mi
,
Z. H.
, and
Jia
,
J. J.
,
2018
, “
Positive Impact of a Tower Inlet Cover on Natural Draft Dry Cooling Towers Under Crosswind Conditions
,”
Appl. Therm. Eng.
,
139
(
7
), pp.
283
294
.
13.
Ma
,
H.
,
Si
,
F. Q.
,
Zhu
,
K. P.
, and
Wang
,
J. S.
,
2018
, “
The Adoption of Windbreak Wall Partially Rotating to Improve Thermo-Flow Performance of Natural Draft Dry Cooling Tower Under Crosswind
,”
Int. J. Therm. Sci.
,
134
(
12
), pp.
66
88
.
14.
Wang
,
W. L.
,
Zhang
,
H.
,
Li
,
Z.
,
Lv
,
J. F.
,
Ni
,
W. D.
, and
Li
,
Y. S.
,
2016
, “
Adoption of Enclosure and Windbreaks to Prevent the Degradation of the Cooling Performance for a Natural Draft Dry Cooling Tower Under Crosswind Conditions
,”
Energy
,
116
(
12
), pp.
1360
1369
.
15.
Zhao
,
Y. B.
,
Long
,
G. Q.
,
Sun
,
F. Z.
,
Li
,
Y.
,
Zhang
,
C. J.
, and
Liu
,
J. B.
,
2015
, “
Effect Mechanism of Air Deflectors on the Cooling Performance of Dry Cooling Tower With Vertical Delta Radiators Under Crosswind
,”
Energy Convers. Manag.
,
93
(
3
), pp.
321
331
.
16.
Goodarzi
,
M.
, and
Maryamnegari
,
S. M.
,
2018
, “
A New Natural Draft Dry Cooling Tower With Improved Thermal Performance During Windy Condition
,”
Appl. Therm. Eng.
,
139
(
7
), pp.
341
351
.
17.
Zhao
,
Y. B.
,
Sun
,
F. Z.
,
Long
,
G. Q.
,
Huang
,
X. F.
,
Huang
,
W. Q.
, and
Lyv
,
D. Q.
,
2016
, “
Comparative Study on the Cooling Characteristics of High Level Water Collecting Natural Draft Wet Cooling Tower and the Usual Cooling Tower
,”
Energy Convers. Manag.
,
116
(
5
), pp.
150
164
.
18.
Zhang
,
Z.
,
Gao
,
M.
,
Dang
,
Z.
,
He
,
S.
, and
Sun
,
F.
,
2019
, “
An Exploratory Research on Performance Improvement of Super-Large Natural Draft Wet Cooling Tower Based on the Reconstructed Dry-Wet Hybrid Rain Zone
,”
Int. J. Heat Mass Transfer
,
142
(
10
), p.
118465
.
19.
Chen
,
X. H.
,
Sun
,
F. Z.
,
Chen
,
Y. L.
, and
Gao
,
M.
,
2019
, “
Novel Method for Improving the Cooling Performance of Natural Draft Wet Cooling Towers
,”
Appl. Therm. Eng.
,
147
(
1
), pp.
562
570
.
20.
Zhou
,
Y.
,
Wang
,
K.
,
Gao
,
M.
,
Dang
,
Z. G.
,
He
,
S. Y.
, and
Sun
,
F. Z.
,
2018
, “
Experimental Study on the Drag Characteristic and Thermal Performance of Non-Uniform Fillings for Wet Cooling Towers Under Crosswind Conditions
,”
Appl. Therm. Eng.
,
140
(
7
), pp.
398
405
.
21.
Gupta
,
A. K.
, and
Moss
,
P. J.
,
1993
,
Guidelines for Design of Low-Rise Buildings Subjected to Lateral Forces
,
CRC Press
,
Boca Raton, FL
.
22.
Zhao
,
Z. G.
,
2001
,
Cooling Tower
,
China WaterPower Press
,
Beijing
.
23.
Gao
,
M.
,
Sun
,
F. Z.
,
Wang
,
K.
,
Shi
,
Y. T.
, and
Zhao
,
Y. B.
,
2009
, “
Experimental Research of Heat Transfer Performance on Natural Draft Counter Flow Wet Cooling Tower Under Cross-Wind Conditions
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
935
941
.
24.
Arri
,
E.
,
Cabiati
,
F.
,
D’Emilio
,
S.
, and
Gonella
,
L.
,
1995
, “
On the Application of the Guide to the Expression of Uncertainty in Measurement to Measuring Instruments
,”
Measurement
,
16
(
1
), pp.
51
57
.
You do not currently have access to this content.